
JAVA FOR THE STUDY OF EVOLUTION

VOLUME VI

StatTrek

Our Basic Statistics toolbox.

José del Carmen Rodŕıguez Santamaŕıa
Edited and commented by: Write here your name *

The EvolJava Community.

* Other affiliation

Original source: http://evoljava.com/

2

Contents

1 Starting up 1
1.1 General terminology . 1
1.2 Installing Java and Eclipse . 2
1.3 Purposes and projects . 4
1.4 Our first program . 5
1.5 Bugs and debugging . 7
1.6 How to import the eJVol6 project 9
1.7 Review . 9

2 First version of the toolbox 11
2.1 Mean and var of a list of data . 11
2.2 Grouping . 27
2.3 Toolboxes . 33
2.4 Conclusion . 51

3 The binomial distribution 53
3.1 Patchwork style . 53
3.2 Conclusion . 57

4 The normal and associated distributions 59
4.1 The z distribution . 59
4.2 p-values . 60
4.3 Merging pieces into a unity . 63
4.4 Critical values . 88
4.5 Conclusion . 97

5 The dictionary of experiments 99
5.1 The simplest experiment . 99
5.2 Popular experiments . 157
5.3 Conclusion . 161

6 Conclusions 163

Answers to exercises 167

i

ii CONTENTS

Codex

Programming languages have at presently a very tight syntax, and Java is not
an exception. So one must learn the formalism used for each case. We can
find here the most usual expressions. A program that contains the referred
instruction is also indicated.

9 pag 6. Printing a message to the console:
System.out.println("I am starting up! ”);

18 pag 12. Type int and double :
int i = 4; double r = 1.234;
18 pag 12. Printing the value of variable x:
System.out.println(" Value of x = ” + x);

18 pag 12. Declaration of a procedure:
private static double sumVector(double[] Vect)

18 pag 12. Declaration of an unidimensional array or vector:
double DataVect[]={5, 3, 4.5, 2};

Declaration of an array with integer entries

//Declaration
int data[]; // data is the name.
data = new int[10]; //memory for 10 entries
//Assignation
Data[2] = 3;
int n = Data.length; //the length of the array Data.

22 pag 14. Declaration of a String

String a = "Hello";

iii

iv CONTENTS

The Tabulator: "\t" Concatenation of Strings:

String s4 = s1+s2+s3;

28 pag 18. The for structure:

for (int i = 0; i < n; i++)
Vect2[i] = Vect[i] * Vect[i];

31 pag 20. Objects in OOP (Object Oriented Programming). Go to the
text.

39 pag 28. Declaration and assignation of a two dimensional array

int Data[][] = {{3, 9},
{4, 10},
{5, 11},
{6, 12},
{7, 13},
{8, 14}};

To address specific entries in a two dimensional array, we must keep in mind
that Java begins counting form zero:

int z = Data[3][1]

In general, the first index address the row and the second the column.
62 pag 57. The while structure

while (this condition meets)
{

do this and that;
}

63 pag 57. The if-else structure: REMEMBER THE DOUBLE ==. Logic:
the and operator &, the or ||, the negation !.

if ((Barriers[j] <= Vect[i]) & (Vect[i] < Barriers[j+1]))
FreqTable[j][1] =FreqTable[j][1] +1;

The negation of a Boolean clause:

if (!(i==2)) |(!(j==2))

72 pag 64. The switch structure that is equivalent to many ifs in parallel.

CONTENTS v

switch (k)
{
case 0: zero(); break;
case 1: one(); break;
case 2: two(); break;
case 3: three(); break;
case 4: four(); break;
case 5: five(); break;
case 6: six(); break;
case 7: seven() ; break;
case 8: eight(); break;
case 9: nine(); break;
default: other(); break;
}

78 pag 68. Abtract classes: go to the text.

Some other useful instructions:
The Math API

double r = 5.2
doube rSquare = Math.pow(r,2);
double rCube = Math.pow(r, 3);
double rEightRoot = Math.pow(r, 0.125);

double rSquareRoot = Math.sqrt(r);

Change of type double to int :

double aa = 3.4;
int i = (int) aa;
System.out.println(i);

Random numbers

import java.util.Random; //At the preamble of the program
Random r = new Random(); // somewhere at the beginning

//A random number from 0 to 5
r.nextInt(6) //In within a method

//Other variants
Random k = new Random(456); //seeded mode for exact repetiti ons.
r.nextLong();
r.nextFloat();
r.nextDouble();
r.nextGaussian();//normal with mean 0 and dev 1.

vi CONTENTS

Random numbers that obey a normal random variable with predetermined
mean equal to µ and deviation σ:

double d = r.nextGaussian()
int c = (int) (Math.floor(sigma * d + mu));

Random numbers and chars

import java.util.Random; //At the beginning of the program
Random r = new Random(); // somewhere at the beginning

//A random number from 1 to 5
r.nextInt(6) //In within a method

//This is a char or letter
char n = ’j’;

//A random upper case char:
char ch = (char) (r.nextInt(26) + 65);

//A random lower case char:
ch = (char) (r.nextInt(26) + 97);

//Other variants
Random r = new Random (seedValue);

r.nextLong();

r.nextFloat();

r.nextDouble();

r.nextGaussian();

Operations with strings that are necessary to simulate evolution. The Re-
place operator:

s2 = s1.replace("ion", "ate");
c.replace(a,b);

Conversion of number to string. If the number is of type double, we use:

CONTENTS vii

s1 = String.valueOf(r2);

When the number is of type int, we use the next procedure:

int i = 3;
Integer n = i;
String s = n.toString();
System.out.println(s);

Copy operator

s2 = s1.substring(4);
s3 = s1.substring(4,8);

The length of a String:
int n = s1.length();
Char c is converted into string s

String s = c.toString();

A number from 0 to 9 is converted to a char.

//Integer number i is converted to char z,
//when z is printed it looks just like i.
char z= (char) (i +48);

A char is withdrawn from a String s and a char is given a numerical code:

char c = s.charAt(0);
int sign = Character.getNumericValue(c);

viii CONTENTS

Preface

The series Java for the Study of Evolution is directed to scientists that want to
manage a serious but not excessively expensive tool to study evolution by di-
rect experimentation under perfectly controlled conditions. These requirements
cannot be met in nature but only in simulations and mathematical models. In
consequence, the series has three main purposes:

1. To endow the community of researchers in biology and evolution
with high level programming, enabling an accurate study of models and
simulations of the most diverse nature.

2. To clearly show how this tool is used to study the fundamental questions
of evolution.

3. To suggest that the study of Java could be very fruitful for undergrad-
uates in biological sciences even more than a course centered at calculus.

This Volume VI is dedicated to accompany those persons that al-
ready worked Vol V, the scientific method with Java, and pursue a
serious improvement in their Java skills by developing a Java statisti-
cal toolbox. The final product, StatTrek, is our toolbox of programs
specially targeted to support learners and teachers of basic statis-
tics. While we work, we will have the opportunity to witness from
first hand how the evolution of software that is developed by human
beings in a concrete case is.

Every part of all our texts and programs in whatever volume can be edited,
commented and criticized. Because every writing implies a responsibility, make
explicit at a frontal place whether or not the original material was modified
and by whom. Next, give a link to the original source and follow your own
style and ethics. For instance, your own comments might be included in special
paragraphs entitled as comment.

Bogotá, Colombia, José Rodŕıguez
June 2011

ix

x CONTENTS

Introduction

In spite of all marvelous statistical packages at disposition, one always longs
for a program to fit exactly in personal needs. The solution is simple: do it by
yourself. So, we share here a basic Java material that everyone can adapt to his
or her personal directives. The material is guided by our companion volume on
Basic statistics and Vol V, The scientific method with Java. This material is
addressed in first instance to persons that already have worked volume V, the
scientific method with Java, and want to compare his or her personal experience
of making a small project, to devise a toolbox for statistics, with that of other
developers. Given that we continue the work began in Vol V, we will reuse as
much material of that volume as possible.

On the other hand, some people would like to just use the toolbox without
worrying too much about learning Java or the scientific method. They are
welcome and so we append a first chapter on how to begin from scratch to run
a Java program and how to carry tiny modifications to run own data and next
they are addressed to the answer of the last exercise of the last chapter. If some
of those persons fall into the temptation of learning more Java, they are invited
to work over the first chapters of the aforementioned Vol V of the series Java
for the study of evolution.

One might use this material to :

• Verify own answers to exercises in statistics.

• Swiftly calculate answers to problems for the redaction of, say, personal-
ized examinations.

• Pursue dexterity in Java programming. In fact, this project is the answer
of the Author to a challenge that was proposed in Vol V, the scientific
method with Java. So, Java learners can study this material to guide
themselves in their own work.

• Learn more about evolution: any software project is an experiment in
evolution, i.e., in the modification of software.

• Develop personal projects.

xi

xii CONTENTS

The title of our enterprise, StatTrek, points to two facts. First, the path of
programming is a very difficult and long. Second, keeping alive the feeling of
adventure, of improvising, of pursuing dreams is the trademark of creativity.

Chapter 1

Starting up

Beginning from total ignorance.

1. Purpose. We learn the general terminology, how to acquire Java and
Eclipse, how to install them, and how to run a first program.

1.1 General terminology

There are some usual terms that we specify below.

2. ♣ General definitions

In first place, let us notice that we, human beings, use languages to com-
municate one with another. A language is composed of verbal instructions,
a code of interpretation and a semantic content. A verbal instruction is a
string of sounds or letters that belong in an alphabet. Verbal instructions must
be deciphered according to a code of interpretation, which appears, say, in
a dictionary. The deciphered verbal instructions convey information about the
world or about actions that must be undertaken and it is in this way that they
acquire semantic content.

A computer is a devise that has the potential ability of executing verbal
instructions. A program is a set of verbal instructions, written in a specific
programming language that can be interpreted and executed by a computer.
Code is a set of instructions that eventually contain correctly written programs.
Software is a set of programs that execute a task and very specially that create
a friendly interface with the human. Hardware is the wiring that converts
programs into specific actions. A robot is a machine that is commanded by a
computer that has been programmed to have certain independence.

A developer is an entity, a person or a process, that is committed to the
design of software, i.e., of programs with a specific function, which is defined
before beginning but that maybe modified along the process. It is absolutely
sure that the first trial of a code is unviable. But if one manages to produce a

1

2 CHAPTER 1. STARTING UP

viable code, most surely it will not do what one was so eagerly expecting. The
process of adjusting the code to the predefined purpose is called debugging.

Our study of Java, our platform of software design, is specifically directed
to show that the insight that the genome is software and evolution is a
software developer is both necessary and sufficient to deal with all
fundamental questions about biological evolution.

To use Java directly is not as easy as using it in duo with Eclipse, which is
a precious interface of Java with the developer. All what follows refers to this
ensemble that is generically referred to as Java. In strict sense, Java is a great
project whose grandiosity might overwhelm at anytime.

The name Java makes reference to a family of ants that lives in the island
of Java. In a single tree but in different leaves one might find various nests of
the same colony. The colony has various queens in proportion to the number of
nests, which also determines the number of adult workers and immatures. But
the numbers of males and of new queens go a path on their own.

3. ♣ Definitions. A method in Java is a portion of code that is designed
to fill a determined function. A set of methods maybe gathered in a class to
execute a great task. A class must be saved in a file with the same name, a
relation that is case-sensitive. Classes are organized in books that are called
projects.

We will learn to install Java, to learn how to use Eclipse to run an existing
Java program, and to manage the fundamental ingredients of programming that
are directed to study models and evolution.

The basic items to simulate evolution are strings and numbers. That is
so because the DNA is a string of characters whose alphabet is A G T C,
while many variables of phenotypic interest are naturally encoded in the form
of numbers.

1. Comment. You can edit this work in whatever way you want. To insert
your own annotations, criticisms, doubts, open questions, mathematical proofs
you can insert a comment, such as the present one, which might be cited as
follows: comment 1 on page 2.

1.2 Installing Java and Eclipse

Sun Microsystems composed Java as a great symphony and distributed it with-
out fees. Sun Microsistems was acquired by Oracle in 2010, which continues
its free distribution. Use Google to contact this company and to load and in-
stall Java on your desktop. To that aim, you can prompt Google with java
download or you can go in through a direct link (Oracle, 2011a).

1.2. INSTALLING JAVA AND ECLIPSE 3

Java comes with a lot of tools, which together form a run time environment.

The web is full in tutorials about Java. As examples, it would be nice to
give a look at the material offered by Oracle (2011b), or by Fred Swartz (2007)
or by Developer (2011).

Follow the instructions to install Java and forget about it because Java is
accessed through an interface, Eclipse, which is also freely distributed. Please,
use Google again to localize Eclipse, next load and install it. Else, contact
Eclipse directly (Eclipse, 2011). The book of Holzner (2004) is of great help to
acquire a global vision about this interface but Eclipse itself has evolved and it
may be preferable to study the guides given by the application itself.

Eclipse offers various options for downloading. You can try

Eclipse Classic.

While installing Eclipse, it demands to create a special file that is known as
workspace and that is used by Eclipse for its ordinary work. It is possible to
create various workspaces, with the name one wants, and to change the used
one.

The first task is to play with the new toy. If you want to be a great master,
you must learn to enjoy playing permanently. By the way, give a try to your
kids: most surely, they are looking for something really cool. Incite them to
look here and there and try out whatever comes to the mind.

The first window that Eclipse opens for you is the WELCOME window. In
Tutorials → Create a Hello world application, follow the instructions and try
to create your first program. If you fail, you might try again. To that end, you
can rescue the Welcome window from the help at the main menu of ECLIPSE.
Else, use our methodology, which comes below.

4. Guarantee. If after some two hours of work you cannot follow the in-
structions of the present chapter to install Java and Eclipse and to run the first
program, consult a helping tutorial video by Dexter(2011). If this is of no help,
it is mandatory that you write me because you are guaranteed to have a happy
start. Furthermore, we present many programs that are guaranteed to work per-
fectly on Java Runtime Environment java-1.6.0-openjdk1.6 and Eclipse SDK
3.4.0. Memory rarely might become important: 2Gb of RAM migth be sufficient
for most cases and 8 was enough for all our instances.

Please, express your discomfort to

jose@evoljava.com

You can find more material at

http://www.evoljava.com

4 CHAPTER 1. STARTING UP

It is rather difficult to understand how a program is designed but we have
made an effort to explain why each program works, and the reader is committed
to learn how to modify them to create variations that fulfill slightly modified
functions. So, the first duty is to learn how to copy a program into Eclipse that
it could be run. The first step is opening a project.

1.3 Purposes and projects

In Java, before copying or designing a program, one must make clear what the
purpose one has in mind is. Our present purpose could be just to begin. This
intention defines a project: Project6. Then, we must communicate to Java our
intention.

5. Opening a project

To open a project, please, follow the sequence of options beginning from
the main menu: File → new → project → Java → Project → Next . A
window will pop up for you with an invitation to fill the relevant data about
your project. Give it a name: Project6. Click Next. In the new window, click
Finish.

Now that we have a purpose, a project, we can learn to append a program
to our project into Eclipse, the interface of Java with the user.

6. Appending a program

The first thing we must do is to acquire the right to append a program into
a project. In Java a program is called class. So, let us click on File → new →
class and a window will pop up. Let us fill in the name of the source project:
Project6 (else browse for it). Let us give a name to our new class: console. If
desired, we could activate the Public static void main property and then we may
click on Finish. Next, one shall see a new window with the name console.java
in its upper bar. We can edit our new program in that window.

7. Copying a program

Programs are not typed except when they are created. Otherwise, they are
transcribed by a copy-paste procedure, for which you have various options:

1. To copy each program from the present pdf document. In this case, you
must resolve a little problem: the copy operation also copies navigating
signals of the document, headers or page numbers, so they must be identi-
fied and deleted. The identification is done automatically by Eclipse after
the paste operation is complete: extraneous lines of text appear with a
red mark at the right margin. They must be deleted.

2. To get the LATEXsource, which can be opened with any text processor.
You can copy any program from it without suffer anyhow. Additionally,

1.4. OUR FIRST PROGRAM 5

you are invited to use our LATEXsource to devise your own material for
yourself or for your students. In general, feel free to do anything good for
forming a healthy and strong evolJava community.

3. To get a file, in plain text, with all programs from which you can copy the
desired program immediately. To get the file, go to http://www.evoljava.com

The copy-paste procedure might consists of the following steps:

1. Clear from the editor or main window of Eclipse the code that was auto-
matically written by Eclipse for you, if any.

2. Highlight the text that you want to copy.

3. Copy the highlighted text to the clipboard.

4. Verify that the active window corresponds to the chosen program, console
in this case. To activate a window with a program, click on its name in
the upper bar of the editor window.

5. Paste the enclosure of the clipboard to the blanked document. Warning:
Eclipse for Windows is not based on Windows but on DOS: the command
for delete is control + x, for copy is control + c, for pasting is control
+ v, for select all is control + a.

6. Save the new program: click on the corresponding icon.

1.4 Our first program

Programsmust obey a certain pattern or structure that is complexity dependent.

8. The simplest structure

Our first programs will have the next structure:

//Program F8 structure
//Same as Program A0
//This is the structure of a program.
//The name in Java of this program is structure
public class structure
{

//Every program has a main
public static void main(String[] args)

{
//Here are the instructions

}
}

6 CHAPTER 1. STARTING UP

When Java runs a program, it looks in first instance for the main method
and begins its execution.

We have below a true program whose purpose is to write a message in the
console. The console is a special window where Eclipse reports results and
errors. If whatever cause hides the console, one can restore its visibility in any
one of the two following options:

a) In the main menu follow the path: Windows → ShowV iew → Console.
b) Click Alt+Shift + Q, then click C.

9. Printing in the console. The next code contains a program, whose
purpose is to print a message to the console.

//Program F9 console
//Same as Program A7
//This is my first program.
//The name of this class is console because
//it prints a message to the console.

public class console
{

//The next is the main method
public static void main(String[] args)
{

// This is a comment.

// Comments help to understand programs.

// The next line contains an instruction
// that prints a message to the console:

System.out.println("I am starting up! ");

}
}

We use in this program the method System.out.println. This method
prints a message to the console and posits the console cursor at the beginning
of the next line. One can use ’print’ to write something but remaining in the
same line.

10. Exercise Observe in the anterior code that parentheses and keys always
come by pairs. Java allows placing each parenthesis with freedom. Our directive

1.5. BUGS AND DEBUGGING 7

is to enable a quick visualization of blocks. Point to the lines that contain a
comment and to those that contain code properly, i.e., instructions that Java
must decipher and execute. What distinguishes code from commentaries? Which
is the function of the semicolon?

Compare your answers with those of the Author that exist for most exercises.
They appear in the chapter Answers. Exercises are part of the text and results
might be used in the sequel.

11. Running our program

To run a program or class, do the following:

1. Right-click on the editor window that contains the text of the new class.

2. In the sub-menu that popped up, click on Run as → Java → Application.

In response, we shall see the output of our first program that writes in the
console the phrase: I am starting up!

12. License. Dear Reader: as part of the exercises, you must modify the
programs. So, you have the license to use all programs written in this book
in whatever form you want even to get rich and very specially to modify them
as you are asked in the exercises. This freedom might help the formation of a
strong EvolJava community.

Let us do our first exercise in varying a program. We are artificially evolving
software.

13. Exercise Modify our first program in such a way as to write in the console
your name and birthday.

1.5 Bugs and debugging

The most immediate reality of every developer, no matter how good and skilled
he or she might be, is the great quantity of errors that he or she commits when
composing a program or modifying a piece of software.

14. A program is known by its fruits

There are two types of errors: those that hinder compilation and those that
hinder function. Compilation is the process of translating a program that
is written in Java into machine language, which is composed of elementary
instructions that can be executed by the computing hardware.

A compilation error or bug happens when the program is not accepted by
the compiler. Eclipse is very gentle with the developer and it marks errors in
red. To correct an error, drag the cursor to the error and wait a moment
while Java pops up a message with the explanation of the nature of the error
and possibly with a suggestion to correct it. Errors are also marked at the

8 CHAPTER 1. STARTING UP

navigating vertical bars that surround the editor window. If in the left bar a
red X appears, drag the cursor to it and an explicative message will appear. If
a yellow light also appears, right click on it to read more suggestions for error
correction. A suggestion can be executed at once by double clicking on it.

Sometimes a program is not accepted but it has no errors. This happens
when one follows the procedure to run a program: right clicking → Run as but
nothing is given to choose. In this case one has a grammatical or syntactic error,
say, the main method is not declared as static.

The most difficult errors happen when the program is accepted for compi-
lation, runs and produces results but these make no sense in regard with the
intended function of the program. To correct these type of errors, one must keep
in mind that software is in general highly informative and so to know its output
there is only one way, to run the program in the computer or in the mind, to see
what it does. In general, mental calculations are not reliable and so one must
resort to real execution: software is known by its fruits. This means that
one must force the program to write out intermediate results to follow detailed
calculations. To do this, one inserts lines of code with instructions to write over
the console interesting variables and their names. Next, one compares output
with correctly expected results and can decide whether or not the error in design
has been committed before of after the line under scrutiny.

Eclipse has special facilities for debugging, which is the process of cleaning
bugs. To this aim, it is good to activate before everything else line numbering:
one must right click over the left vertical bar that surround the editor window.
A menu will pop up and over it, one checks the box corresponding to Show
line numbers. Next one must target a given line of the project as compilation
breaking point: right click over the left vertical bar of the editor window and
choose Toggle Breakpoint. Next, follow the menus Window → Open perspective
→ Java Browsing. Next one chooses Run → Debug as → Java Application.
The program will run until the breakpoint and a table will be displayed with
the variables and their names when the execution runs at this precise place.
Additionally, helping menus get activated: they are located in the Menu Run
→ step in, step over. Play a bit with them to see what happens.

Reality seems to recurrently show that apart from never stop suffering there
is nothing else to debugging. Nevertheless, some people consider that debugging
is a science on their own, so, they develop black lists with statistics and special
strategies for catching bugs and things like that. Actually, there are programing
languages and styles of developing software that are error prone. We will discuss
below some strategies directed to attack such weaknesses, which can not be
completely abolished because bug free software is technically an impossibility.
The reason is that software to be bug free must be tested for every possible case
and this can take longer than allowed time.

My first black list of bugs:

1. Terminal semicolon “;” is lacked.

1.6. HOW TO IMPORT THE EJVOL6 PROJECT 9

2. A variable has been erroneously typed.

3. Keys or parentheses do not go by pairs.

4. The type of a variable has been violated, say, variable i has been declared
as int (integer 0, ±1, ±2, ...) but it is instantiated as int i = 3.56;

1.6 How to import the eJVol6 project

Eclipse offers the opportunity to effortlessly import complete projects with all
its files. All one needs is to turn Eclipse with its already created workspace and
follow the next procedure.

15. The eJVol6 project

Let us import into the workspace the eJVol6 project with all its ready to be
run files. To that aim:

1. Download the eJVol6.zip file associated to Vol 5 and keep it in a suitable
folder.

2. Over Eclipse follow the menus: File → Import → General → Existing
projects into Workspace → Select Archive File. In the new dialog, browse
for the folder where you put the file. Click over the file and next on Finish.
This operations create a new project, eJVol6, with all the source files of
Vol V.

3. To see your recently created project, go to the menu Window → show
view → Package explorer. On the corresponding window, look for your
project and expand its tree to find source files. After that, all Java files
will appear below src.

4. To run a specific program, select it and next pulse F3 to show it on the
editor window. Left click on the editor window and with right clicking
follow the run as menu. Next, choose Java application.

5. To see the output of the program, go to Window → Show View → Console.

These instructions are guaranteed to function. Otherwise, write me to ne-
gotiate a truly functional set of instructions.

1.7 Review

We have learned how to acquire and install Java and its companion Eclipse and
we have created our first project to which we appended our first program.

10 CHAPTER 1. STARTING UP

Chapter 2

First version of the toolbox

Like a grain of mustard
Along the next chapters, we will recurrently work out more powerful imple-

mentations of our toolbox, so we will have the opportunity to witness from first
hand how the evolution towards perfection is. We will reuse developed material
in Vol V as much as possible. People interested in just using the toolbox can
work this chapter to next pass directly to the final version of the toolbox which
is presented in the answer to the last exercise.

16. Purpose. We build a toolbox to calculate the mean and variance of data
in diverse formats.

2.1 Mean and var of a list of data

17. Definitions. Data are said to be quantitative or numeric when they
are numbers for which arithmetic operations make sense. If we have a list of
numerical data X and a given datum is xi, meaning that it appears in place i,
the mean or average is

X̄ = Σxi

n = Σx
n

Sample variance s2: measures the nonconformity of the data if they are
represented by the mean. (We divide by n in descriptive statistics and by n− 1
in inferential tasks.)

s2 = Σ(xi−X̄)2

n−1 = Σ(x−X̄)2

n−1

The sample standard deviation s is the square root of the variance:

s =
√

Σ(xi−X̄)2

n−1 =
√

Σ(x−X̄)2

n−1

11

12 CHAPTER 2. FIRST VERSION OF THE TOOLBOX

Coefficient of variation C: measures the degree of homogeneity of data
with respect to the mean

C = s
X̄

Other people prefer the coefficient of variation to be given in percentage.

18. The code for the mean and variance follows.

//Program F18 MeanVarList1
//This program computes the mean and
//variance of a list of data.

public class meanVarList1
{

//Prints data in vector
private static void printVector(double Vect[])

{
//System.out.println("Data are");
for (int i = 0; i < Vect.length; i++)

System.out.println(Vect[i]);
}

//Sums data in vector with real numbers
private static double sumVector(double Vect[])

{
int n = Vect.length;
double sum = 0;
for (int i = 0; i < n; i++)

sum = sum + Vect[i];
return sum;

}

//The mean of a list of data
private static double meanVector(double Vect[])

{
double sum = sumVector(Vect);
int n = Vect.length;
double mean = sum / n;
return mean;

}

//The variance of a list of data
private static double varVector(double Vect[])

2.1. MEAN AND VAR OF A LIST OF DATA 13

{
//Mean
double mean = meanVector(Vect);
// Variance is calculated by definition
int n = Vect.length;
double sum2 = 0;
for(int i = 0; i < n; i++)

sum2 = sum2 + (Vect[i]-mean) * (Vect[i]-mean);
double var = sum2 / (n-1);
return var;

}

//The mean and variance of a list of data
private static void meanVarVector(double DataVect[])
{
System.out.println("\nNumber of data = " + DataVect.lengt h);
double mean = meanVector(DataVect);
System.out.println("Mean = "+ mean);
double var = varVector(DataVect);
System.out.println("Variance = "+ var);
double deviation = Math.pow(var, 0.5);
System.out.println("Deviation = "+ deviation);
double coeffVar = deviation/mean;
System.out.println("Coefficient of variation = "

+ coeffVar);
System.out.println("Coeff around 0.01, " +

"homogeneous population.");
System.out.println("Coeff around 0.1, " +

" +/- homogeneous population.");
System.out.println("Coeff around 0.5, " +

" heterogenous population.");
}

//Mean and Variance of a list of data
public static void meanVarVector()
{
System.out.println("MEAN AND VAR OF A LIST OF DATA");
//Example 19 page 9.
double DataVect[] = {5, 3, 4.5, 2};
printVector(DataVect);
meanVarVector(DataVect);
}

14 CHAPTER 2. FIRST VERSION OF THE TOOLBOX

public static void main(String[] args)
{

meanVarVector();
}

}

19. Self-test. The list of data 1,1,1,1,1 must produce mean 1 and variance
0. Since these results are obvious, one can use them to test our program. A test
of this sort is called a self-test. One also can use examples of the preferred
text. To carry out a self-test is the very first duty of every developer over every
program. To make the auto-test, the Author used examples of the companion
book Statistics Volume I, version 7. Reference number and page are cited in
within the program.

20. Exercise. Run the program and play with the code, i.e., make a self-test
and process your own data.

21. Displaying tables. Java is enabled with a powerful formalism to write
tables that are both pleasant to look at and with the precision one desires. One
has two equivalent methods: printf and format. We will use the first, which
means, print with format.

22. The code for a table that reports squares under various formats.

//Program F22 table
//The printf instruction is used
//to write tables.
public class table {

public static void main(String[] args)
{

//Printing numbers of type int
for(int i = 0; i < 12; i++)

System.out.printf("%7d %12d %n", i, i * i);
//Printing numbers of type double
for(int i = 0; i < 12; i++)

{
double a = i * i;

System.out.printf("%7d %11.5f %n", i, a);
}

//Markers are inserted
for(int i = 0; i < 10; i++)

{
double a = i * i;

2.1. MEAN AND VAR OF A LIST OF DATA 15

System.out.printf(" (%d) %11.2f %n", i, a);
}

for(int i = 10; i < 12; i++)
{

double a = i * i;
System.out.printf(" (%d) %11.2f %n", i, a);

}
//Printing strings
String s = "abcdefghijklmnopqrstuvxywz";
System.out.printf("%1s %n", s);
System.out.printf("%10s %n", s);
System.out.printf("%40s %n", s);

}
}

23. Exercise. Run the program and play with the code. Describe how the
printf method functions. Overshadow an appropriate region of the output
and paste it to your preferred worksheet and draw the corresponding parable. In
SpeadSheet of LibreOffice for OpenSuse: copy to clipboard → paste special →
unformatted text → Separator options = space + merge delimeters → chart →
XY(scatter).

24. Exercise. Compose a program to calculate the variance of a list of data
using the following identity:

s2 = n
∑

x2−(
∑

x)2

n(n−1)

The symbol
∑

x2 means: lift each datum to the second power and add ev-
erything. The symbol (

∑
x)2 means: add all data and lift to the square.

To make your program into a helping tool for teachers and students, you must
have it to output enough intermediate results. In that way, they would compare
each important step of their calculations with the output of your program.

25. Motherland style. There are infinitely many different styles of pro-
gramming. Let us rewrite the code developed in the previous exercise in a style
according to which one enables reuse but relies on of global variables which as-
sign to memory the role of motherland. To enable reuse, one encapsulates
small pieces of code into separate methods that eventually might serve in oth-
ers programs. But the output of each method is void and so methods are like
agents that go around the whole country making things and eventually cropping
outputs. The code follows:

//Program F25 meanVarList3
//This program computes the mean and
//variance of a list of data.
//Motherland style of design:

16 CHAPTER 2. FIRST VERSION OF THE TOOLBOX

//Code is compartmentalized in methods
//but all inputs and outputs of methods are void
//and so they work over globally defined variables
//that assign to memory the role of motherland
//and to methods that of servicing agents.

public class meanVarList3
{

/ *
* Variables defined here

* at the very beginning of the program

* are defined as static. They

* remain alive during the whole execution

* and can be read or updated by every method.

* They are global variables.

* /

//Example 19 page 9.
private static double DataVect[] = {5, 3, 4.5, 2};
private static double sumx=0, sumx2=0;
private static double mean;
private static int n = DataVect.length;
//Symbolic initialization
private static double squaresVect[] = {0,0,0,0};
private static double var, deviation, coeffVar;

//Sums data in vector with real numbers
private static void sumVector()

{
for (int i = 0; i < n; i++)
sumx = sumx + DataVect[i];

}

//The mean of a list of data
private static void meanVector()

{
int n = DataVect.length;
mean = sumx / n;

}

//Computes the squares of each entry of a vector
private static void squareVector()

{
for(int i = 0; i < n; i++)
squaresVect[i] = DataVect[i] * DataVect[i];

2.1. MEAN AND VAR OF A LIST OF DATA 17

}

//Sums data in vector with real numbers
private static void sumVector2()

{
for (int i = 0; i < n; i++)

sumx2 = sumx2 + squaresVect[i];
}

private static void printTable()
{

String a = "x";
String b = "x2 = xˆ2";

System.out.printf("%n %10s %11s", a, b);
for(int i = 0; i < n; i++)

System.out.printf("%n %10.3f %10.3f ",
DataVect[i], squaresVect[i]);

System.out.printf("%n Sum %6.3f %10.3f ",
sumx, sumx2);

System.out.print("\n \n");
System.out.println("n = number of data = " + n);

System.out.println("\nsumx = " + sumx);
System.out.println("Mean = sumx / n");
System.out.println("Mean = " + mean);
System.out.println("sumx2 = " + sumx2);
System.out.println("variance = " +

"(n * sumx2 - sumx * sumx)/ (n * (n-1))");
var = (n * sumx2 - sumx * sumx)/ (n * (n-1));
System.out.println("Variance = "+ var);
deviation = Math.pow(var, 0.5);
System.out.println("Deviation = "+ deviation);
coeffVar = deviation/mean;
System.out.println("Coefficient of variation " +

"= deviation/mean");
System.out.println("Coefficient of variation = "

+ coeffVar);
}

private static void explanation()
{

System.out.println("\nCoeff around 0.01, " +
"homogeneous population." +

18 CHAPTER 2. FIRST VERSION OF THE TOOLBOX

"\nCoeff around 0.1, " +
" +/- homogeneous population."+
"\nCoeff around 0.5, " +
" heterogenous population.");

}

//The mean and variance of a list of data
private static void meanVarVector()

{
sumVector();
meanVector();
squareVector();
sumVector2();
printTable();
explanation();

}

public static void main(String[] args)
{

System.out.println("MEAN AND VAR OF A LIST OF DATA");
meanVarVector();

}

}

26. Exercise. Run the program and play with the code.

27. Exercise. Examine the previous code to judge whether or not compart-
mentalizing code into methods indeed enables reuse, i.e., evolution.

28. Functional style. Let us see a program written in the functional

style. Such a style is distinguished because it enables evolution to the full, where
evolution stands for natural and easy reuse of outputs using methods to build
more complex objects. To that aim, the first idea is of course to encapsulate
functional parts of code into separate methods. Second, to eliminate the need of
duplicate code the function paradigm is adopted: every method is a machine that
processes in a unique way a given input into a unique output that must be clearly
separated from the input. In third place, we declare that global variables are
forbidden and instead one creates the necessary objects or classes to encapsulate
for reuse the natural output of every method. The immediate advantage of having
no global variable is that the complexity of design diminishes. In effect, if global
variables are not allowed, every method must define locally the necessary short
living helping variables and so it separates domestic problems from national ones

2.1. MEAN AND VAR OF A LIST OF DATA 19

and also the past from the present. In the next illustrative example we lift the
entries of a vector to the second power.

//Program F28 functionStyle
//No global variables,
//input and output are clearly separated,
//output is ready for reuse.

public class functionStyle
{

//Prints data in vector
private static void printVector(double[] Vect)

{
//System.out.println("Data are");
for (int i = 0; i < Vect.length; i++)

System.out.println(Vect[i]);
}

//The entries of Vect are squared
private static double[] squareVector(double[] Vect)

{
int n = Vect.length;
//Symbolic initialization
double Vect2[] = {0,0,0,0};
for (int i = 0; i < n; i++)
Vect2[i] = Vect[i] * Vect[i];
return Vect2;

}

public static void main(String[] args)
{

System.out.println("DATA");
double DataVect[] = {5, 3, 4.5, 2};
printVector(DataVect);
double DataVect2[] = squareVector(DataVect);
System.out.println("SQUARES OF DATA ");
//The output of squareVector() is used by printVector()
printVector(DataVect2);

}

}

29. Exercise. Run the program and play with the code.

20 CHAPTER 2. FIRST VERSION OF THE TOOLBOX

30. Exercise. Rewrite according to the functional style the code developed to
calculate the mean and variance of a list of data.

31. Own objects. OOP (object oriented programming) is distinguished be-
cause everything is ready for easy reuse. Java is not completely OOP because
this language has many purposes, one of which is to allow beginners to have a
happy beginning. So, many items actually are not objects. So, when trying to
make a connection, it fails. The solution is to devise own objects. The present
level of complexity is appropriate to learn/review how this is done. The next
code devises an object, Vector, which is just a one dimensional array of type
double. The code follows:

//Program F31 meanVarList5
/ * This program computes the mean and

variance of a list of data.
Functional style of design is implemented
in the form of an inner class or object:

* /

public class meanVarList5
{

/ *
* An object is defined is the form of an inner class

* /

//The outer application is instantiated
private static meanVarList5 p = new meanVarList5();

//======== Inner class definition=======

//This inner class defines a new type: Vector.
//It is like types int or double.
//It converts array F (one dimensional) into
//a class or object, ready for reuse.
private class Vector
{

//The class Vector fundamentally has two elements:
//a vector and its length.
int length;
double F[] = new double[2000];

//The input of Vector is defined here
//by means of an initialization procedure

2.1. MEAN AND VAR OF A LIST OF DATA 21

//that is called constructor.
//An instance of Vector can be
//initialized in various ways,
//with various constructors:

//First: Automatic zeroed initialization
Vector(int l)
{
length = l;
for(int i = 0; i < length; i++)

F[i] = 0;
}

//Second: Initialization from a 1d- array
Vector(double[] A, int m)
{

length = m;
for(int i = 0; i < length; i++)
F[i] = A[i];

}

//Third: Initialization by cloning from a Vector
Vector(Vector A)
{

length = A.length;
for(int i = 0; i < A.length; i++)
F[i] = A.F[i];

}

//In the same way as 5 is an instance of int,
//so, one can construct specific instances of Vector.
//They can be manipulated as shown below.
//But they are also allowed to produce outputs
//or actions on their own such as this:
private void printVector(Vector Vect, String s)
{

System.out.println("\n" + s);
for (int i = 0; i < Vect.length; i++)

System.out.println(Vect.F[i]);
System.out.println();

}
}//end of inner class

//=== Methods of the outer class meanVarList5 ===

22 CHAPTER 2. FIRST VERSION OF THE TOOLBOX

//Data are summed.
//The input is a Vector, the output is of type double.
private static double sumVector(Vector V)

{
double sum = 0;
for(int i = 0; i < V.length; i++)

sum = sum + V.F[i];
return sum;

}

//The mean of a list of data
private static double meanVector(Vector V)

{
int n = V.length;
double mean = sumVector(V) / n;
return mean;

}

//Every entry of a Vector is squared.
//The input is a Vector, the output is also a Vector.
private static Vector squareVector(Vector V)
{

//Zeroed initialization of a Vector
Vector list = p.new Vector(V.length);
//The square of each entry of F is calculated
//and kept in list.F
for(int i = 0; i < V.length; i++)

list.F[i] = V.F[i] * V.F[i];
return list;

}

//Documentation is printed
private static void explanation()
{

System.out.println("\nCoeff around 0.01, " +
"homogeneous population." +
"\nCoeff around 0.1, " +
" +/- homogeneous population."+
"\nCoeff around 0.5, " +
" heterogenous population.");

}

//This is the core of the main class

2.1. MEAN AND VAR OF A LIST OF DATA 23

//Here, commands are given to execute the overall task.
private static void meanVarVector(Vector V)
{

String a = "x";
String b = "x2 = xˆ2";
System.out.printf("%n %10s %11s", a, b);
int n = V.length;
Vector squareVect = p.new Vector(V);
squareVect = squareVector(V);
for(int i = 0; i < n; i++)

System.out.printf("%n %10.3f %10.3f ",
V.F[i], squareVect.F[i]);

double sumx = sumVector(V);
double mean = meanVector(V);
double sumx2 = sumVector(squareVect);
System.out.printf("%n Sum %6.3f %10.3f ",

sumx, sumx2);
System.out.print("\n \n");
System.out.println("n = number of data = " + n);

System.out.println("\nsumx = " + sumx);
System.out.println("Mean = sumx / n");
System.out.println("Mean = " + mean);
System.out.println("sumx2 = " + sumx2);
System.out.println("variance = " +

"(n * sumx2 - sumx * sumx)/ (n * (n-1))");
double var = (n * sumx2 - sumx * sumx)/ (n * (n-1));
System.out.println("Variance = "+ var);
double deviation = Math.pow(var, 0.5);
System.out.println("Deviation = "+ deviation);
double coeffVar = deviation/mean;
System.out.println("Coefficient of variation " +

"= deviation/mean");
System.out.println("Coefficient of variation = "

+ coeffVar);
explanation();

}

//Input is read and directed to processing methods
public static void main(String[] args)
{

System.out.println("MEAN AND VAR OF A LIST OF DATA");
//Example 19 page 9.
double DataVect[] = {5, 3, 4.5, 2};
//Initialization of a Vector from an array
Vector list1 = p.new Vector(DataVect, DataVect.length);

24 CHAPTER 2. FIRST VERSION OF THE TOOLBOX

list1.printVector(list1, "Original data");
meanVarVector(list1);

}

}//End of main classes

32. Exercise. Run the program and play with the code. To better understand
the code, switch your Eclipse to debugging mode as follow:

1. In the editor window, in the most left column, right-click in front of the
instruction that you want to understand and choose Toggle Breakpoint. A blue
circle will appear in the left column.

2. In the main menu, choose: Run → Debug As → Java Application
3. Make sure that the console is visible: in the main menu, choose window →

view → Console.
3. Press F5 various times and observe that the output appears step by step.
4. Observe that F5 is one among various possibilities of ’debugging’ this

program. Search out for others modes under the run menu and play with them.
5. To return to ordinary mode, go to Window → Open Perspective → Java.

33. Gossipless, transparent style. There are infinitely many styles. Say,
one can be eventually very proud of the previous program that follows the func-
tional style and that moreover devises own objects. Nevertheless, we have at
once a criticism: the problem spins around a table that contains data and their
squares. Nevertheless, such a table appears as a visual illusion in the console
once it is printed but the program contains no table in its data structure or in its
action flow. Therefore, that program can be blamed for its lack of transparency.
So, a transparent style is one in which the code, its output, the problem and
its solution are all made on the same image. The importance of transparency
stems form the fact that developing software is just going over fixing bugs whose
correction generates more bugs. So, transparency is important because it enables
easier correction of bugs.

As everyone knows, gossips add to life a lot of troubles. The same happens in
programming. Thus, we say that a style is gossipless when domestic problems
are solved at home while problem found at the place of work are solve precisely
there. The form as this directive is implemented is by defining local variables
that do not exist outside the scope of local problems. This style has been adopted
by Java.

34. The code for a transparent version of the program that calculates

a variance follows.

//Program F34 meanVarList6
/ * This program computes the mean and

variance of a list of data.
Transparent, functional style of design:

2.1. MEAN AND VAR OF A LIST OF DATA 25

1) Code is compartmentalized in methods.
2) Every method is a function with

a clearly specified input and
with an output that is ready for reuse
in other methods.

3) No global variables.
4) Methods are ready for reuse in other classes.
5) The code, its output, the problem and its solution

are all made on the same image.

* /

public class meanVarList6
{

/ *
* No global variables

* /

//Data of column k are summed.
//The input is a table, the output is of type double.
private static double sum(double[][] T, int k)
{

double sum = 0;
for(int i = 0; i < T.length; i++)

sum = sum + T[i][k];
return sum;

}

//A matrix is constructed with two columns.
//First: raw data, second, teir squaresl.
private static double[][] buildTable(double[] V)
{

//Zeroed initialization of a Vector
double[][] M = new double[V.length][2];
//The square of each entry of F is calculated
//and kept in list.F
for(int i = 0; i < V.length; i++)

{
M[i][0] = V[i];
M[i][1] = V[i] * V[i];

}
return M;
}

//A table is printed

26 CHAPTER 2. FIRST VERSION OF THE TOOLBOX

private static void printTable(double[][] T)
{

String a = "x";
String b = "x2 = xˆ2";
System.out.printf("%n %10s %11s", a, b);
int n = T.length;
for(int i = 0; i < n; i++)

System.out.printf("%n %10.3f %10.3f ",
T[i][0], T[i][1]);

}

//Documentation is printed
private static void explanation()
{

System.out.println("\nCoeff around 0.01, " +
"homogeneous population." +
"\nCoeff around 0.1, " +
" +/- homogeneous population."+
"\nCoeff around 0.5, " +
" heterogenous population.");

}

//This is the core of the main class
//Here, commands are given to execute the overall task.
private static void meanVarVector(double[] V)
{

//A table is declared
double[][] Table = new double[V.length][2];
Table = buildTable(V);
printTable(Table);
double sumx = sum(Table,0);
int n = Table.length;
double mean = sumx/ n;
double sumx2 = sum(Table,1);
System.out.printf("%n Sum %6.3f %10.3f ",

sumx, sumx2);
System.out.print("\n \n");
System.out.println("n = number of data = " + n);

System.out.println("\nsumx = " + sumx);
System.out.println("Mean = sumx / n");
System.out.println("Mean = " + mean);
System.out.println("sumx2 = " + sumx2);
System.out.println("variance = " +

"(n * sumx2 - sumx * sumx)/ (n * (n-1))");

2.2. GROUPING 27

double var = (n * sumx2 - sumx * sumx)/ (n * (n-1));
System.out.println("Variance = "+ var);
double deviation = Math.pow(var, 0.5);
System.out.println("Deviation = "+ deviation);
double coeffVar = deviation/mean;
System.out.println("Coefficient of variation " +

"= deviation/mean");
System.out.println("Coefficient of variation = "

+ coeffVar);
explanation();

}

//Input is read and directed to processing methods
public static void main(String[] args)
{

System.out.println("MEAN AND VAR OF A LIST OF DATA");
//Example 19 page 9.
double DataVect[] = {5, 3, 4.5, 2};
meanVarVector(DataVect);

}

}

35. Exercise. Run the program and play with the code.

36. Panacea style. We tacitly are engaged in the task of discovering a style
of design that will help us in the very difficult task of software development. So,
it seems that we are looking for a panacea. Are we correctly oriented?

37. Exercise. Develop a program in which a table becomes an object in the
same way as a vector was made in a personalized object. Make your best to
follow a gossipless, transparent, functional style of design.

2.2 Grouping

To present a list of data is not the best option for all purposes. Because of
various reasons one would prefer to group data in classes, ranges or intervals.
The first case is considered in frequencies tables that by default report absolute
frequencies of repeated data.

38. Frequency tables. If data are repeated, as in the scores of a group of
students, one might group data in a frequency table, such that datum x is
repeated F times.

In that case, the mean and variance take the following form.
The mean is

X̄ = Σ(xF)
n = Σ(xiFi)

n = (x1F1)+....+(xnFm)
n

28 CHAPTER 2. FIRST VERSION OF THE TOOLBOX

The variance can be calculated variously, we choose one method that is suit-
able for work with calculators. It is the output of the following procedure:

Step 1: the pondered sum of squares is calculated

Σx2F = x2
1F1 + x2

2F2 + ...+ x2
nFm

Step 2: the sum of squares Sxx term is calculated

Sxx = Σx2F − (ΣxF)2

n

Step 3: the variance is:

s2 = Sxx

n−1

39. Exercise. Compose an OOP program to calculate mean and variance of
a frequency table. It is by no mean sure that devising own objects might be the
best option for this problem, but we use the occasion to practice with OOP.

40. Evolutionary inertia. From the stand point of reuse, evolution might
become a heavy load for development. To see this, let us consider that the com-
puting of the variance can be implemented in at least two ways. If we want to
reuse the code that was developed to calculate the variance of a list of data, we
would devise a table with five columns: x, F , xF , x2, x2F . In that way, we use
the code to calculate squares and we would understand x2F as (x2)F . Never-
theless, if we do not want to rely on reuse but on the best option, we might use
only four columns: x, F , xF , x2F and we would understand x2F as x(xF). We
cannot exclude that in a good evolutionary environment both alternatives would
appear and that the best would win in the long trend. But the mater is that evo-
lution must left tracks in the fossil record in which non optimal solutions must
be found all around the world. In our case, this prediction is correct: one can
see that the optimal solution can be found in version 7 of the first vol of Statis-
tics that accompanies this series but the suboptimal solution can be found in all
previous editions. This fact illustrates our general claim: evolution of complex
features must left a clear evolution towards perfection that must be apparent in
the fossil record.

41. Exercise. Adapt the code that was developed for a frequency table to find
the mean and variance of a cumulative frequency table. In such a table, the
frequency associated to each class marker includes as its own frequency as all
those below it.

42. From a list to a frequency table. If we want to extract the tendency
of a given set of data, say, to determine it they follow a central one, one must
calculate a table of absolute frequencies that next could be represented by, say,
a bar diagram. To pass from the list to a frequency table, on must group data
by intervals. This can be done in one of two forms. First, to explicitly define
the borders of each class or interval and second, to define the first inferior limit
and the length of each interval. The code for the first method follows:

2.2. GROUPING 29

//Program F42 ListToFT
//Groups data in interval classes.
//Input:
//A list of data,
//a list of the borders of the intervals,
//and a list of class markers.
//Outputs a frequency table with its
//mean and variance.
//Style reuse.

public class ListToFT
{

//The outer application is instantiated
private static ListToFT p = new ListToFT();

//======== Inner class definition=======

//This inner class defines a new type: Table.
//It converts array F (two dimensional) into
//a class or object, ready for reuse.
private class Table

{
//The class Table has two main elements:
//1) The titles of the columns, whose length
//gives the number of columns.
//2) A matrix, whose length is the number of rows.

String[] Titles = { "x", "F", "xF", "x2F"};
double M[][] = new double[2000][Titles.length];
int nRows;
//The input of Table is defined here
//by means of an initialization procedure
//that is called constructor.
//The natural input is the frequency table
//which is consigned in a matrix FT with 2 columns.

Table(double[][] FT)
{

nRows = FT.length;
//The matrix M of Table is initialized
//Raw data go in columns 0 and 1.
//Squares in the second.
for(int i = 0; i < nRows; i++)

{
M[i][0] = FT[i][0];

30 CHAPTER 2. FIRST VERSION OF THE TOOLBOX

M[i][1] = FT[i][1];
M[i][2] = M[i][0] * M[i][1];
M[i][3] = M[i][0] * M[i][2];

}
}

//Data of column k are summed.
//The input is a table, the output is of type double.
private double sum(Table T, int k)

{
double sum = 0;
for(int i = 0; i < T.nRows; i++)

sum = sum + T.M[i][k];
return sum;

}

private void printTable(Table T)
{

System.out.printf("%n %10s %10s %10s %10s",
T.Titles [0], T.Titles [1],

T.Titles [2],T.Titles [3]);
for (int i = 0; i < T.nRows; i++)

System.out.printf(
"%n %10.3f %10.3f %10.3f %10.3f ",
T.M[i][0], T.M[i][1], T.M[i][2], T.M[i][3]);
System.out.println();

}
}//end of inner class

//=== Methods of the outer class ListToFT ===

private static void printList(double DataVector[],
String s)

{
System.out.println("\n " +s);
int nData = DataVector.length;

boolean go = true;
int nCols = 10;
int nRows = 9;
int counter = 0;

for (int i = 0; (i < nRows) & go; i++)
{

for (int j = 0; (j < nCols) & go; j++)

2.2. GROUPING 31

{
System.out.print(DataVector[i * 10 + j] + " ");

if (counter >= nData-1) go = false;
counter = counter+1;
}
System.out.println();

}
System.out.print("\nNumber of data = " +nData + "\n");

}

//List is the input, a frequency table is the output
private static double[][] group(double List[], double Bor ders[],

double classMarkers[])
{

int nClasses = classMarkers.length;
double FreqTable[][] = new double[nClasses][2];
int nData = List.length;

for(int j=0; j < nClasses; j++)
{
FreqTable[j][0] = classMarkers[j];
FreqTable[j][1] = 0;
}
for(int i=0; i< nData; i++)
{

for(int j=0; j < nClasses; j++)
{

if ((Borders[j] <= List[i]) & (List[i] < Borders[j+1]))
FreqTable[j][1] =FreqTable[j][1] +1;

}

}

return FreqTable;
}

//Documentation is printed
private static void explanation()

{
System.out.println("\nCoeff around 0.01, " +

"homogeneous population." +
"\nCoeff around 0.1, " +
" +/- homogeneous population."+

32 CHAPTER 2. FIRST VERSION OF THE TOOLBOX

"\nCoeff around 0.5, " +
" heterogenous population.");

}

// Mean and variance of a frequency table
private static void meanVarTable(double FreqTable[][])
{

//A table is declared
Table T = p.new Table(FreqTable);
T.printTable(T);
double n = T.sum(T,1);
double sumxF = T.sum(T,2);
double sumx2F = T.sum(T,3);
System.out.printf("Sum %18.3f %10.3f %10.3f ",

n, sumxF, sumx2F);
double mean = sumxF/ n;
System.out.print(

"\n\n n = Number of objects = sum F = "+ (int) n);
System.out.printf("\n sum xF = %10.3f ", sumxF);
System.out.printf("\n sum x2F = %10.3f ", sumx2F);
System.out.printf("\n Mean = sum xF / n = %10.3f ",

mean);
double Sxx = sumx2F - Math.pow(sumxF, 2)/n;
System.out.printf(
"\n Sxx = sum x2F - (sumxF)ˆ2 /n = %10.3f ", Sxx);
double var = Sxx / (n-1);
System.out.printf(
"\n Variance = Sxx/(n-1) = %10.3f ", var);
double deviation = Math.sqrt(var);
System.out.printf(
"\n Deviation = %10.3f ", deviation);
double c = deviation/ mean;
System.out.printf(

"\n Coefficient of variation = %10.3f \n", c);
explanation();

}

public static void main(String[] args)
{
//Declaration of data:
//observed values as a list
//Example 24 pag 12
double List[] =
{

2.3. TOOLBOXES 33

48.5, 49.2, 51.0, 50.9, 48.7, 50.5, 49.5, 50.8, 50.0, 51.1,
50.7, 51.1, 49.3, 49.1, 50.0, 48.7, 51.2, 49.2, 49.0, 49.3,
49.1, 48.7, 48.6, 49.2, 49.9, 50.1, 50.1, 50.9, 52.4, 50.2,
49.5, 50.9, 51.4, 49.7, 49.8, 50.8, 50.3, 51.8, 50.0, 51.1,
51.3, 50.1, 50.4, 51.1, 49.8, 49.8, 50.1, 50.7, 50.1, 49.9,
49.7, 51.1, 49.7, 49.9, 49.8, 50.5, 49.7, 50.8, 50.7, 50.7,
50.8, 51.5, 51.0
};
System.out.println("FROM DATA LIST TO FREQUENCY TABLE:") ;
printList(List, "Raw data");
//Borders of the intervals
double Borders[] = {48.5, 49.5, 50.5, 51.5, 52.5};
double classMarkers[] = {49, 50, 51, 52};
int nClasses = classMarkers.length;
double FreqTable[][] = new double[nClasses][2];
printList(Borders, "Borders of intervals");
FreqTable = group(List, Borders, classMarkers);
meanVarTable(FreqTable);
}

}//end of class

43. Exercise. Run the program and play with the code. Explain why the style
of this program is reuse but not transparent. Discuss the implications over the
dilemma of evolution vs good style.

44. Exercise: from a data list to a frequency table, variant. Reuse
previous codes to devise a program that computes a frequency table from a data
list given the first border of the inferior interval and the length of intervals.
Mean and variance must be reported.

2.3 Toolboxes

A toolbox is a program whose main method is void so that it can be filled at
pleasure by the User by making calls to needed methods. In practice, one fills
the main method with a list of all available ones but they are muted with the
possible exception of one, which is active.

45. Example. A toolbox looks like this:

//Program E45 toolBox1
//This is how a
//toolbox looks like.

/ *
This is a tool box of methods to calculate some statistics

34 CHAPTER 2. FIRST VERSION OF THE TOOLBOX

of a list of data and of frequency tables.

How to use this program:

1. This program is a tool box because its main method
contains all relevant allowed methods
but only one is activated, all others are
muted.

2. To silence one method, append // as a prefix.
To activate a method, delete the prefix //.

3. For a given task, choose the best suited method
among the diverse variants.

4. To run a method with your own data,
modify the inbuilt data according to your needs.

5. To inquire about unknown terms, drag the mouse over
the term and wait until Eclipse displays the
corresponding documentation.

6. To go from the name of a
method to its implementation:
Pose the cursor over the name of the method
and press F3: you will be transported to the
implementation of the method.

7. To mark a specific site in the program:
-Activate line numbering.
-Pose the cursor over the line you want to mark.
-Go to the corresponding number at the left margin

of the Editor Window and right click.
-Choose the Add Bookmark menu and punch it.
-A blue marker will appear in the right margin of the

Editor Window. By clicking over it, one can
return to the desired place.
One can also play with the menu
Window -> ShowView -> Outline:
a list with all methods will appear,
click over any one and you will
transported to the corresponding place
along the text of the program.

* /

public class toolBox1
{

//Processes a string
private static void method1(String s)

{

2.3. TOOLBOXES 35

System.out.println(s);
}

//Processes a string and an int
private static void method2(String s, int n)

{
int t = s.length() * n;
System.out.println("s = " + s);
System.out.println("n = " + n);
System.out.println("t = s.length() * n");
System.out.println("t = " + t);

}

//Processes a vector
private static void method3(double Vect[])
{

double sum = 0;
for(int i = 0; i < Vect.length; i++)

sum = sum + Vect[i];
System.out.println("Sum = " + sum);

}

public static void main(String[] args)
{

//method1("abc");
//method2("Hello!",4);
double Data[] = {1,2,3,4,5};
method3(Data);

}

}//End of class.

46. Exercise. Run the program and give each method the possibility to get
activated while the others remain silent.

47. Example: a toolbox with just one tool. Let us make a toolbox to
calculate the basic statistics of a list of data and nothing else. We look for the
best of available options and include it in our toolbox.

//Program F47 toolBox2
/ *

This is a tool box of methods to calculate
some statistics of a list of data.

36 CHAPTER 2. FIRST VERSION OF THE TOOLBOX

How to use this program:

1. Append it to any project and run it.
2. This program is a tool box because its main method

can be filled with any allowed method.
3. Most relevant allowed methods are listed in the main

but only one is activated, all others are
muted.

4. To silence one method, append // as a prefix.
To activate a method, delete the prefix //.

5. For a given task, choose the best suited method
among the diverse variants.

6. To run a method with your own data,
modify the inbuilt data according to your needs.

7. This first version has just one aim:
To implement fundamental tasks as transparently
as possible. So, it looks rather like an array of
independent, non interacting methods.

8. To inquire about unknown terms, drag the mouse over
the term and wait until Eclipse displays the
corresponding documentation.

9. To go from the name of a
method to its implementation:

Pose the cursor at the end of the line
with the name of the method and press the space bar,
next press F3: you will be transported to the
implementation of the method.

10. To mark a specific site in the program:
-Activate line numbering.
-Pose the cursor over the line you want to mark.
-Go to the corresponding number at the left margin

of the Editor Window and right click.
-Choose the Add Bookmark menu and punch it.
-A blue marker will appear in the right margin of the

Editor Window. By clicking over it, one can
return to the desired place.
One can also play with the menu
Window -> ShowView -> Outline
A list with all methods will appear:
click over any one and you will
transported to the corresponding place
along the text of the program.

* /

2.3. TOOLBOXES 37

public class toolBox2
{

//The outer application is instantiated
private static toolBox2 p = new toolBox2();

//=============================
//MAIN--MAIN--MAIN--MAIN--MAIN
//=============================

public static void main(String[] args)
{

meanVarList();
}

//==
// IMPLEMENTATION
//==

//======== Inner class definition=======

//This inner class defines a new type: Table.
//It converts array F (two dimensional) into
//a class or object, ready for reuse.
private class Table
{

//The class Table fundamentally has three elements:
//a matrix with two columns and its length,
//which is the number of rows and
//the titles of columns.
int length;
String[] Titles = { "x", "x2 = xˆ2"};
double M[][] = new double[2000][2];

//The input of Table is defined here
//by means of an initialization procedure
//that is called constructor.
//The natural input is the raw data,
//which is consigned in a one dimensional array.
Table(double[] V)
{

length = V.length;
//The matrix M of Table is initialized

38 CHAPTER 2. FIRST VERSION OF THE TOOLBOX

//Raw data go in the first column.
//Squares in the second.
for(int i = 0; i < length; i++)
{

M[i][0] = V[i];
M[i][1] = V[i] * V[i];

}
}

//Data of column k are summed.
//The input is a table, the output is of type double.
private double sum(Table T, int k)
{

double sum = 0;
for(int i = 0; i < T.length; i++)

sum = sum + T.M[i][k];
return sum;

}

private void printTable(Table T)
{

System.out.printf("%n %10s %11s", T.Titles [0], T.Titles [1]);
for (int i = 0; i < T.length; i++)

System.out.printf("%n %10.3f %10.3f ",
T.M[i][0], T.M[i][1]);

System.out.println();
}

}//end of inner class

//=== Methods of the outer class toolBox2 ===

//Prints the list and the title
private static void printList(double DataVector[],

String title)
{

System.out.println("\n " + title);
int nData = DataVector.length;
boolean go = true;
int nCols = 10;
int nRows = 9;
int counter = 0;
for (int i = 0; (i < nRows) & go; i++)

{
for (int j = 0; (j < nCols) & go; j++)

2.3. TOOLBOXES 39

{
System.out.print(DataVector[i * 10 + j] + " ");
if (counter >= nData-1) go = false;
counter = counter+1;

}
System.out.println();

}
System.out.print("\nNumber of data = " +nData + "\n");

}

//Documentation is printed
private static void explanation()
{

System.out.println("\nCoeff around 0.01, " +
"homogeneous population." +
"\nCoeff around 0.1, " +
" +/- homogeneous population."+
"\nCoeff around 0.5, " +
" heterogenous population.");

}

//This is the core of the main class
//Here, commands are given to execute the overall task.
private static void meanVarVector(double[] V)
{

//A table is declared
Table T = p.new Table(V);
T.printTable(T);
double sumx = T.sum(T,0);
int n = T.length;
double mean = sumx/ n;
double sumx2 = T.sum(T,1);
System.out.printf("%n Sum %6.3f %10.3f ",

sumx, sumx2);
System.out.print("\n \n");
System.out.println("n = number of data = " + n);

System.out.println("\nsumx = " + sumx);
System.out.println("Mean = sumx / n");
System.out.println("Mean = " + mean);
System.out.println("sumx2 = " + sumx2);
System.out.println("variance = " +

"(n * sumx2 - sumx * sumx)/ (n * (n-1))");
double var = (n * sumx2 - sumx * sumx)/ (n * (n-1));
System.out.println("Variance = "+ var);

40 CHAPTER 2. FIRST VERSION OF THE TOOLBOX

double deviation = Math.pow(var, 0.5);
System.out.println("Deviation = "+ deviation);
double coeffVar = deviation/mean;
System.out.println("Coefficient of variation " +

"= deviation/mean");
System.out.println("Coefficient of variation = "

+ coeffVar);
explanation();

}

//Input is read and directed to processing methods
public static void meanVarList()
{

System.out.println("MEAN AND VAR OF A LIST OF DATA");
//Example 19 page 9.
double List[] = {5, 3, 4.5, 2};
//Prints list and title
printList(List, "Raw data");
System.out.println("\nTABLE WITH x AND ITS SQUARE");
meanVarVector(List);

}

}

48. Exercise. Run the program and play with the code.

49. Example: how to add a new function to the toolbox. Let us add now
to our toolbox the possibility to calculate the mean and variance of a frequency
table. Given that we have got content with only one test for each program, we
cannot guarantee that our programs are bugfree. Therefore, the only aim of the
toolbox must be at present just to function. No other improvement is envisaged,
in particular simplification is forbidden if it hinders the easiness to debug or
modify the material.

//Program F49 toolBox3
/ *

This is a tool box of methods to calculate
some statistics of a list of data.

How to use this program:

1. Append it to any project and run it.
2. This program is a tool box because its main method

can be filled with any allowed method.
3. Most relevant allowed methods are listed in the main

but only one is activated, all others are
muted.

2.3. TOOLBOXES 41

4. To silence one method, append // as a prefix.
To activate a method, delete the prefix //.

5. For a given task, choose the best suited method
among the diverse variants.

6. To run a method with your own data,
modify the inbuilt data according to your needs.

7. This first version has just one aim:
To implement fundamental tasks as transparently
as possible. So, it looks rather like an array of
independent, non interacting methods.

8. To inquire about unknown terms, drag the mouse over
the term and wait until Eclipse displays the
corresponding documentation.

9. To go from the name of a
method to its implementation:

Pose the cursor at the end of the line
with the name of the method and press the space bar,
next press F3: you will be transported to the
implementation of the method.

10. To mark a specific site in the program:
-Activate line numbering.
-Pose the cursor over the line you want to mark.
-Go to the corresponding number at the left margin

of the Editor Window and right click.
-Choose the Add Bookmark menu and punch it.
-A blue marker will appear in the right margin of the

Editor Window. By clicking over it, one can
return to the desired place.
One can also play with the menu
Window -> ShowView -> Outline
A list with all methods will appear:
click over any one and you will
transported to the corresponding place
along the text of the program.

* /

public class toolBox3
{

//The outer application is instantiated
private static toolBox3 p = new toolBox3();

42 CHAPTER 2. FIRST VERSION OF THE TOOLBOX

//=============================
//MAIN--MAIN--MAIN--MAIN--MAIN
//=============================

public static void main(String[] args)
{

meanVarList();
meanVarFreqTable();

}

//==
// IMPLEMENTATIONS
//==

//==
// MEAN AND VAR O A LIST OF DATA
//==

//======== Inner class definition=======

//This inner class defines a new type: Table.
//It converts array F (two dimensional) into
//a class or object, ready for reuse.
private class Table
{

//The class Table fundamentally has three elements:
//a matrix with two columns and its length,
//which is the number of rows and
//the titles of columns.
int length;
String[] Titles = { "x", "x2 = xˆ2"};
double M[][] = new double[2000][2];

//The input of Table is defined here
//by means of an initialization procedure
//that is called constructor.
//The natural input is the raw data,
//which is consigned in a one dimensional array.
Table(double[] V)

2.3. TOOLBOXES 43

{
length = V.length;
//The matrix M of Table is initialized
//Raw data go in the first column.
//Squares in the second.
for(int i = 0; i < length; i++)
{

M[i][0] = V[i];
M[i][1] = V[i] * V[i];

}
}

//Data of column k are summed.
//The input is a table, the output is of type double.
private double sum(Table T, int k)
{

double sum = 0;
for(int i = 0; i < T.length; i++)

sum = sum + T.M[i][k];
return sum;

}

private void printTable(Table T)
{

System.out.printf("%n %10s %11s", T.Titles [0], T.Titles [1]);
for (int i = 0; i < T.length; i++)

System.out.printf("%n %10.3f %10.3f ",
T.M[i][0], T.M[i][1]);

System.out.println();
}

}//end of inner class

//=== Methods of the outer class toolBox3 ===

//Prints the list and the title
private static void printList(double DataVector[],

String title)
{

System.out.println("\n " + title);
int nData = DataVector.length;
boolean go = true;
int nCols = 10;
int nRows = 9;

44 CHAPTER 2. FIRST VERSION OF THE TOOLBOX

int counter = 0;
for (int i = 0; (i < nRows) & go; i++)

{
for (int j = 0; (j < nCols) & go; j++)

{
System.out.print(DataVector[i * 10 + j] + " ");
if (counter >= nData-1) go = false;
counter = counter+1;

}
System.out.println();

}
System.out.print("\nNumber of data = " +nData + "\n");

}

//Documentation is printed
private static void explanation()
{

System.out.println("\nCoeff around 0.01, " +
"homogeneous population." +
"\nCoeff around 0.1, " +
" +/- homogeneous population."+
"\nCoeff around 0.5, " +
" heterogenous population.");

}

//This is the core of the main class
//Here, commands are given to execute the overall task.
private static void meanVarVector(double[] V)
{

//A table is declared
Table T = p.new Table(V);
T.printTable(T);
double sumx = T.sum(T,0);
int n = T.length;
double mean = sumx/ n;
double sumx2 = T.sum(T,1);
System.out.printf("%n Sum %6.3f %10.3f ",

sumx, sumx2);
System.out.print("\n \n");
System.out.println("n = number of data = " + n);

System.out.println("\nsumx = " + sumx);
System.out.println("Mean = sumx / n");
System.out.println("Mean = " + mean);
System.out.println("sumx2 = " + sumx2);

2.3. TOOLBOXES 45

System.out.println("variance = " +
"(n * sumx2 - sumx * sumx)/ (n * (n-1))");

double var = (n * sumx2 - sumx * sumx)/ (n * (n-1));
System.out.println("Variance = "+ var);
double deviation = Math.pow(var, 0.5);
System.out.println("Deviation = "+ deviation);
double coeffVar = deviation/mean;
System.out.println("Coefficient of variation " +

"= deviation/mean");
System.out.println("Coefficient of variation = "

+ coeffVar);
explanation();

}

//Input is read and directed to processing methods
private static void meanVarList()
{

System.out.println("MEAN AND VAR OF A LIST OF DATA");
//Example 19 page 9.
double List[] = {5, 3, 4.5, 2};
//Prints list and title
printList(List, "Raw data");
System.out.println("\nTABLE WITH x AND ITS SQUARE");
meanVarVector(List);

}

//=== =
// MEAN AND VAR OF A TABLE OF ABSOLUTE FREQUENCIES
//=== =

//======== Inner class definition=======

//This inner class defines a new type: Table.
//It converts array F (two dimensional) into
//a class or object, ready for reuse.
private class TableFreq

{
//The class Table has two main elements:
//1) The titles of the columns, whose length
//gives the number of columns.
//2) A matrix, whose length is the number of rows.

String[] Titles = { "x", "F", "xF", "x2F"};
double M[][] = new double[2000][Titles.length];
int nRows;

46 CHAPTER 2. FIRST VERSION OF THE TOOLBOX

//The input of Table is defined here
//by means of an initialization procedure
//that is called constructor.
//The natural input is the frequency table
//which is consigned in a matrix FT with 2 columns.
TableFreq(double[][] FT)

{
nRows = FT.length;
//The matrix M of Table is initialized
//Raw data go in columns 0 and 1.
//Squares in the second.
for(int i = 0; i < nRows; i++)
{

M[i][0] = FT[i][0];
M[i][1] = FT[i][1];
M[i][2] = M[i][0] * M[i][1];
M[i][3] = M[i][0] * M[i][2];

}
}

//Data of column k are summed.
//The input is a table, the output is of type double.
private double sum(TableFreq T, int k)

{
double sum = 0;
for(int i = 0; i < T.nRows; i++)
sum = sum + T.M[i][k];
return sum;

}

private void printTable(TableFreq T)
{

System.out.println("\nExtended matrix to " +
"calculate variance:");

System.out.printf("%n %10s %10s %10s %10s",
T.Titles [0], T.Titles [1],

T.Titles [2],T.Titles [3]);
for (int i = 0; i < T.nRows; i++)

System.out.printf(
"%n %10.3f %10.3f %10.3f %10.3f ",
T.M[i][0], T.M[i][1], T.M[i][2], T.M[i][3]);

System.out.println();
}

}//end of inner class

2.3. TOOLBOXES 47

//=== Methods of the outer class toolBox3 ===

// Mean and variance of a frequency table
private static void meanVarTable(double FreqTable[][])
{
//A table is declared
TableFreq T = p.new TableFreq(FreqTable);
T.printTable(T);
double n = T.sum(T,1);
double sumxF = T.sum(T,2);
double sumx2F = T.sum(T,3);
System.out.printf("Sum %18.3f %10.3f %10.3f ",

n, sumxF, sumx2F);
double mean = sumxF/ n;
System.out.print(

"\n\n n = Number of objects = sum F = "+ (int) n);
System.out.printf("\n sum xF = %10.3f ", sumxF);
System.out.printf("\n sum x2F = %10.3f ", sumx2F);
System.out.printf("\n Mean = sum xF / n = %10.3f ", mean);
double Sxx = sumx2F - Math.pow(sumxF, 2)/n;
System.out.printf(

"\n Sxx = sum x2F - (sumxF)ˆ2 /n = %10.3f ", Sxx);
double var = Sxx / (n-1);
System.out.printf(

"\n Variance = Sxx/(n-1) = %10.3f ", var);
double deviation = Math.sqrt(var);
System.out.printf(

"\n Deviation = %10.3f ", deviation);
double c = deviation/ mean;
System.out.printf(

"\n Coefficient of variation = %10.3f \n", c);
explanation();
}

//Prints table
private static void printMatrix(double Matrix[][],

String title)
{
System.out.println(title);
int m = Matrix.length;

for (int i = 0; i < m; i++)
System.out.println(Matrix[i][0]+

"\t "+ Matrix[i][1]);
}

48 CHAPTER 2. FIRST VERSION OF THE TOOLBOX

private static void meanVarFreqTable()
{

System.out.println("\n\nMEAN-VAR OF A FREQUENCY TABLE") ;
//Frequency table: first coordinate = class marker
//second coordinate = frequency

//Example 20, pag 10
double FreqT[][] =

{{4, 3},
{7, 6},
{10, 10},
{13, 15},
{16, 4},
{19, 2}};

printMatrix(FreqT, "\n Raw data");
meanVarTable(FreqT);
}

}

50. Exercise. Run the program and play with the code.

51. Exercise. Retro-engineer the previous program toolBox3: merge toolBox2
with the program to calculate mean and var of a frequency table into a single
program and make the necessary amendments to achieve a functional unit.

52. Exercise. Embed in your toolBox all the functions implemented in the
present chapter to calculate the basic statistics of quantitative data.

53. Editor code for PsTricks. We can use Java to produce the code to
draw a bar diagram for PsTricks, a drawing facility for LATEX. The code follows:

//Code F53
//This is not a class, just code to insert somewhere.
//Produces the pstricks code for the bar graph
//of a frequency table
public static void makeCode(double FreqTable[][])
{

System.out.println("\nPSTRICKS code for the FreqTable\n ");
int n = FreqTable.length;
//Width of each column
double deltaX = 4;
//The minimum x-coordinate is found
double Minxx = 1000;

2.3. TOOLBOXES 49

for (int i = 0; i < n; i++)
if (FreqTable[i][0] < Minxx)

Minxx = FreqTable[i][0];
int Minxxx = (int) (deltaX * Minxx - deltaX);
//The maximum x-coordinate is found
double Maxx = 0;
for (int i = 0; i < n; i++)

if (FreqTable[i][0] > Maxx)
Maxx = FreqTable[i][0];

int Maxxx = (int) (deltaX * Maxx + deltaX);
//The maximum y-coordinate is found
int Maxyy = 0;
for (int i = 0; i < n; i++)

if (FreqTable[i][1] > Maxyy)
Maxyy = (int) FreqTable[i][1] + 2;

//Starting clause
//x- and y-units.
//The needed space is defined
System.out.println("\\begin{center}" +

"\n\\psset{xunit=0.15,yunit=0.3}" +
"\n\\begin{pspicture}(" + Minxxx +",0)(" +
Maxxx+ "," + Maxyy+")");
//A rectangle is drawn for each entry in the
//frequency table

int lim1,lim2;
for (int i = 0; i < n; i++)

{
lim1 = (int) (deltaX * FreqTable[i][0] -deltaX/2);
lim2 = (int) (lim1 + deltaX);
System.out.print(

"\n\\psline("+ lim1 + ",0)" +
"("+lim1 +"," + FreqTable[i][1]+ ")" +
"("+lim2 + ","+ FreqTable[i][1]+ ")" +
"("+lim2 + ","+ "0)"

);
}

//Horizontal axis
System.out.println("\n\\psline(" +

Minxxx +",0)("+ Maxxx + ",0)");

//Class markers (first coordinates) are indicated
for (int i = 0; i < n; i++)

{
int xposition = (int) (deltaX * FreqTable[i][0]);

50 CHAPTER 2. FIRST VERSION OF THE TOOLBOX

int yposition = - 1;
System.out.print

(
"\n\\rput * ("+ xposition + "," + yposition+ "){"+

(int) (FreqTable[i][0])+ "}"
);

}
System.out.println();

//Labels for heights (second coordinates) are indicated
for (int i = 0; i < n; i++)

{
int xposition = (int) (deltaX * FreqTable[i][0]);
int yposition = (int) (1+ FreqTable[i][1]);
System.out.print

(
"\n\\rput * ("+ xposition + "," + yposition+ "){" +

(int) (FreqTable[i][1])+ "}"
);
}

//End clause
System.out.println("\n\\end{pspicture}");
System.out.println("\\end{center}");
}

public static void codePSTricks()
{

double FreqT[][] =
{{3, 3},

{4, 3},
{5, 2},
{6, 2},
{7, 1},
{8, 1}};

makeCode(FreqT);
}

54. Exercise. Add this method to your toolBox4 to create toolBox5. Play
with the code.

55. Challenge. Imprint your personal seal over your toolBox by adding
another function to analyze quantitative data, say, a method to sort data or to
plot a steam and loaf diagram.

2.4. CONCLUSION 51

2.4 Conclusion

There are too many styles for programmingmost possibly one for each developer.
But given that designing software is very difficult, it is our duty to learn a style
that possibly would alleviate that difficult task. Our election has been to single
out a gossipless, transparent functional style of design. We propose that a style
results from a strategy to solve problems so it is a direct result of having a rather
limited mind. Therefore, we predict that evolution must have no style, i.e., so
evolution must be dominated by disorder but locally it must follow a given style
that never will get repeated anyhow. Moreover, we have illustrated one of our
general claims: evolution of complex features must left a clear evolution towards
perfection that must be apparent in the fossil record.

52 CHAPTER 2. FIRST VERSION OF THE TOOLBOX

Chapter 3

The binomial distribution

Coins and probabilities.

Everyone has played with coins to decide who wins and who loses. So, we
can use this background to ease the introduction of abstract concepts such as
probability density functions.

56. Purpose. To add to our toolbox some code that helps us to understand
the binomial distribution. Since we recycle the material of the previous volume,
we go rather rapidly.

3.1 Patchwork style

Let us calculate the binomial distribution. We illustrate another style in which
methods operate over reserved patches of memory like a farmer works and crops
over the same area.

57. The code for binomial distribution. Style= farmer.

//Program F57 binomial.
//This program outputs p(x)
//for given n and p,
//Style = farmer.

public class binomial
{
//Prints n data in vector
private static void printVector(double[] Vect, int n)
{

//System.out.println("Data are");
for (int i = 0; i < n; i++)

53

54 CHAPTER 3. THE BINOMIAL DISTRIBUTION

System.out.println(Vect[i]);
}

//Sums data in vector with real numbers
private static double sumVector(double[] Vect, int n)
{

double sum = 0;
for (int i = 0; i < n; i++)

sum = sum + Vect[i];
return sum;

}

//Returns numb!
private static long factorial (long numb)
{

if (numb <=1) return 1;
else
return numb * factorial (numb -1);

}

//The binomial distribution
//for n repeats
//probability of head p,
//amplification factor F.
private static void binomialDistribution(int n,

double p, double F ,
double[] CoefficientsBinomial,
double[] pBinomial,
double[] pBinomialF)

{
long biCoeff = 0;
for(int r = 0; r < n+1; r++)

{
biCoeff = factorial(n) /

(factorial(r) * factorial(n-r));
CoefficientsBinomial[r] = biCoeff;

}
System.out.println("\nCoefficients ");
printVector(CoefficientsBinomial,n+1);
System.out.println("Sum = " +

sumVector(CoefficientsBinomial,n+1));

for(int r = 0; r < n+1; r++)
{

pBinomial[r] = CoefficientsBinomial[r] *

3.1. PATCHWORK STYLE 55

Math.pow(p, r) * Math.pow(1-p, n-r);
}

System.out.println("\nProbabilities for 0,1,2...");
System.out.println("Paste this vector to Excel" +

" and make a graphic");
printVector(pBinomial,n+1);
sumVector(pBinomial,n+1);
System.out.println("Sum = "

+ sumVector(pBinomial,n+1));
for(int k = 0; k < n+1; k++)
pBinomialF[k] = F * pBinomial[k];
System.out.println("\nAbsolute frequencies for F = " + F);
printVector(pBinomialF,n+1);
System.out.println("Sum = " +

sumVector(pBinomialF,n+1));
}

//Detailed computation of the mean
private static void detailedMean(int n,

double p,
double[] pBinomial)

{
System.out.println("\nDetailed mean: xp(x)");
double sum =0;
double term;
for(int r = 0; r < n+1; r++)
{

term = r * pBinomial[r];
System.out.println(r + " " + term) ;
sum = sum +term;

}
System.out.println("mean = sum xp(x) = " + sum) ;
System.out.println("Expected mean = np = " + n * p) ;

}

//Detailed computation of the variance
private static void detailedVariance(int n,

double p,
double[] pBinomial)

{
System.out.println("\nDetailed variance: " +

"(x-mean) * (-mean) * p(x)");
double sum =0;
double term;
for(int r = 0; r < n+1; r++)

56 CHAPTER 3. THE BINOMIAL DISTRIBUTION

{
term = Math.pow(r- n * p,2) * pBinomial[r];
System.out.println(r + " " + term) ;
sum = sum +term;

}
System.out.println("Variance = " +

"sum (x-mean) * (-mean) * p(x) = " + sum) ;
System.out.println(

"Expected var = np(1-p) = " + n * p* (1-p)) ;
System.out.println("Deviation = " + Math.sqrt(sum));

}

private static void binomialDist()
{

System.out.println("BINOMIAL DISTRIBUTION ");
double CoefficientsBinomial[] = new double[1000];
double pBinomial[] = new double[1000];
double pBinomialF[] = new double[1000];
int n= 5;
double p = 0.2;
int F = 35;
System.out.println("n= " + n);
System.out.println("p = " + p);
System.out.println("F = " + F);
binomialDistribution(n,p, F ,CoefficientsBinomial,

pBinomial, pBinomialF);
detailedMean(n,p,pBinomial);
detailedVariance(n,p,pBinomial);

}

public static void main(String[] args)
{

binomialDist();
}

}

58. Exercise. Run the program and play with the code.

59. Exercise. Pay attention to the method binomialDistribution(...):
it read inputs, n, p and F, then it makes some calculations whose output is lo-
cated at pBinomial and other vectors but these already appear listed in the input.
So, this style mixes input and output altogether. It resembles a farmer that seeds
and crops in the same area. Rewrite the code following a gossipless, transparent,
functional style.

60. Exercise. Compose the code to calculate p(a ≤ x ≤ b) for a binomial
distribution and add the code to the previous program.

3.2. CONCLUSION 57

61. Challenge. Compose the code to calculate for the binomial distribution
the next quantities:

a) Ψ(a, b) = p(a < x < b), probability of a closed interval;

b) Ψ[a, b] = p(a ≤ x ≤ b), probability of an open interval;

c) Ψ[a, b) = p(a ≤ x < b), probability of a closed-open interval;

d) Ψ(a, b] = p(a < x ≤ b), probability of an open-closed interval;

e) Ψ[a] = p(x ≤ a), closed cumulative distribution function;

f) Ψ(a) = p(x < a), open cumulative distribution function;;

g) Ψ[a >] = p(x ≥ a), closed survival function or p-value of a;

h) Ψ(a >) = p(x > a), open survival function or p-value of a;

62. Exercise. For the binomial distribution, resolve the next inverse problem
corresponding to finding the critical value associated to a given significance level
α, 0 ≤ α ≤ 1: find the maximal k such that p(x ≥ k) ≥ α. Formulate and solve
the corresponding problem for the lower tail and next for two tails. Use the code
to update binomial3 to binomial4.

63. Exercise. Use the code of binomial4 to update toolBox5 to version 6.

3.2 Conclusion

We have worked probabilities, the cumulative distribution and critical values
for the binomial distribution. We have shown how the farmer style functions
and in this way we continue to support our claim that there are infinitely too
many different styles of programming, possibly one for each developer.

58 CHAPTER 3. THE BINOMIAL DISTRIBUTION

Chapter 4

The normal and associated

distributions

Critical and p-values
A normal distribution can be taken as an idealization of a distribution with

central tendency that perfectly fits a binomial one. In statistical inference, one
finds that the normal distribution is associated with other four, z, t, χ2 and F ,
which conform the aim of this chapter.

64. Purpose. Here we reuse the code of the previous volume to compose a
program to calculate critical and p-values of the z, t, χ2 and F distributions.

4.1 The z distribution

A normal distribution with mean 0 and deviation 1 is the z-distribution. By
a change of scale, on can use this distribution to study whatever normal one.

65. Definitions that make sense for continuous distributions of cen-

tral tendency.

1. The p-value of an event e is p(x ≥ e), the probability of getting an event
that is equal or greater than e. Events that are extreme, localized at the far
reaches of the distribution, are interesting because their associated p-values
are small, say less than 0.05.

2. The significance level α is a number 0 ≤ α ≤ 1 that represents the
fraction of events that are considered as extreme and that deserve special
studies to elucidate whether or not its existence is due to the same mech-
anism that generates those events at the center of the distribution. If the
significance level is concentrated in one tail of the distribution, we say that
we deal with one tail but if its divided in the two tails, we say that we
deal with two tails.

59

60 CHAPTER 4. THE NORMAL AND ASSOCIATED DISTRIBUTIONS

3. The upper critical value associated to the upper tail and significance
level α is an event x+ such that its p-value is exactly equal to α. In that
case we say that an event is extreme if it is equal or greater than x+.
The lower critical value associated to the lower tail and significance
level α is an event x− such that p(x ≤ x−) = α. In that case we say
that an event is extreme if it is equal or less than x−. If we deal with two
tails, one divides the significance in two parts and finds the corresponding
critical values, one for the upper tail and the other for the lower one.
Extremes events are defined accordingly.

4. The null hypothesis is that every event is generated by the same mecha-
nism that gives rise to the distribution. The alternate hypothesis is that
there are also other acting mechanisms that eventually might interfere.

5. A test decides which hypothesis is recommendable to take. The decision
taken by default is the following: if an event is classified as normal, not
extreme, we accept the null hypotheses else we reject it and we advise to
consider another possibly mechanism to explain observed event apart from
the one that generated the observed distribution.

6. The scientific method is error prone: an event that is extreme might have
been produced by the very same mechanisms that explain the considered
distribution: this causes an α-error. By the same token, an event can be
classified as normal, not extreme, but it might have been produced by alien
mechanisms not considered in the computation of the studied distribution:
we have a β-error.

7. This protocol defines the naked scientific method. Every person likes to
dress the naked scientific method in an appropriate for her or him philo-
sophical or religious ideology.

66. Exercise. Show that the probability of committing an error is α-dependent
and find the probability of committing an α error. Do the same for β-errors.

4.2 p-values

The code that calculates the p-values for our distributions, one by one, follows:

67. The next code calculates the p-value for the z-distribution:

//Program F67 pValueZ
//Reports the p- value associated to a given event
//for a standardized normal distribution.
//Combines Simpson’s rule
//with a change of scale to
//swiftly calculate the integral
//under the bell in within 0 and z for any z.

4.2. P-VALUES 61

public class pValueZ
{

private static final double pi = 3.14159265358979323846;

//Returns the transformed density function of the
//standardized normal distribution.
private static double zFunction(double t)

{
double z = t/(1-t * t);
double f = 1 /Math.pow(2 * pi, 0.5) * Math.exp(-z * z/2) *

(1+ t * t)/((1-t * t) * (1-t * t));
return f;

}

//To use this method for another distribution,
//instead of zFunction(z), write and make a call for your
//new distribution.
private static double f(double xValue)

{
return zFunction(xValue);

}

//Returns the integral under the function f
//in within 0 and z. Precision=1/N.
//Simpson’s rule adapted for reuse.
private static double HalfBodySimpson(double z, long N)

{
double h = z/(2 * N);
long m = N;
double sum = f(0);
for(int j= 1; j<=m; j++)

sum = sum + 4* f((2 * j-1) * h);
for(int j= 1; j<m; j++)

sum = sum + 2* f((2 * j) * h);
sum = sum + f((2 * m) * h);
sum = (h/3) * sum;
return sum;

}

//The area in within zero and z of chosen
//distribution is calculated
//for various degrees of precision.
private static double area(double z)

62 CHAPTER 4. THE NORMAL AND ASSOCIATED DISTRIBUTIONS

{
z = (Math.sqrt(1+4 * z* z)-1)/(2 * z);
int N;
double answer;
int i = 3;
N = (int) Math.pow(10, i);
answer = HalfBodySimpson(z,N);
return answer;

}

//Returns Psi(e) = p(x < e)
//the cumulative distribution function of z
private static double psi(double z)
{

return 0.5 + area(z);
}

//Returns the p-value(e) = p(x > e)
//the p-value of z
private static double pValue(double z)
{

return 1- psi(z);
}

public static void main(String[] args)
{

System.out.println("\nz distribution");
double testValue = 1.23456789;
System.out.println("\nTest value = " + testValue);
System.out.print("Simpson’s rule."+
"\nArea = p(0 < x < " + testValue + ") = ");
double area = area(testValue);
System.out.println(area);
double twoAreas = 2 * area;
System.out.println("Two Areas = " + twoAreas);
//psi(e) = p(x < e)
double psi = psi(testValue);
System.out.println("psi(" + testValue + ") " +

"= p(x < " + testValue + ") = " + psi);
double pValue = pValue(testValue);
System.out.println("p-value(" +

testValue + ") = " +
"p(x > " + testValue + ") = " + pValue);

}
}

4.3. MERGING PIECES INTO A UNITY 63

68. Exercise. Run the program and play with the code. Check the precision
of the code with Gnumeric.

69. Exercise. Reuse the previous code to devise a software to calculate p-
values for the t-distribution. Check the precision of the code with Gnumeric.
The density function of the t- distribution is

ft(x) =
Γ[(ν+1)/2]
Γ(ν/2)

√
νπ

(1 + x2

ν)−
ν+1
2

where the Γ function is defined by

Γ(x/2)=

{
(x/2− 1)(x/2− 2)...3× 2× 1 if x is even.
(x/2− 1)(x/2− 2)...3/2× 1/2×√

π if x is odd.

70. Exercise. Reuse the previous code to devise a software to calculate p-
values for the χ2-distribution. Keep in mind that the density function of this
distribution is zero below zero. Check the precision of the code with Gnumeric.
The probability density function of the χ2- distribution is

fχ2(x) = 1
2ν/2Γ(ν/2)

e−
x
2 x

ν−2
2 for x ≥ 0.

71. Exercise. Reuse the previous code to devise a software to calculate p-
values for the F -distribution. Keep in mind that the density function of this
distribution is zero below zero. Check the precision of the code with Gnumeric.
The probability density function is given by

fF (x) =
Γ(

ν1+ν2
2)

Γ(
ν1
2)Γ(

ν2
2)

ν
ν1
2

1 ν
ν2
2

2
x

ν
−2
1
2

(ν2+ν1x)
ν1+ν2

2

for x ≥ 0.

where Γ is the gamma function defined in the chi-square theorem, the degrees
of freedom are ν1 = n1 − 1 and ν2 = n2 − 1.

4.3 Merging pieces into a unity

We have various programs to calculate the p-values of diverse distributions. A
next purpose is to add it to our toolbox. We can do that in various ways, the
very first is just to add one class after another in tandem.

The problem with this option is that it is not elegant because all programs
have a lot in common while the main difference lies in the methods that define
the specific distribution and some other helping methods.

To produce a single class without redundancy one might include a lot of ifs
that discriminate which distribution must be dealt with. Now, when we have
various ifs, we have the option to use the Java switch structure as follows:

64 CHAPTER 4. THE NORMAL AND ASSOCIATED DISTRIBUTIONS

72. The switch structure

One uses the switch structure when one is presented with a multiple selection
problem as follows:

// switch multiple selection structure
public static void permutator(int k)
{

switch (k)
{
case 0: zero(); break;
case 1: one(); break;
case 2: two(); break;
case 3: three(); break;
case 4: four(); break;
case 5: five(); break;
case 6: six(); break;
case 7: seven() ; break;
case 8: eight(); break;
case 9: nine(); break;
}

}

This structure is executed by reading the value of k and executing the cor-
responding case, if any, and the structure is abandoned in the next step. The
program with the complete code follows:

//Program F72 switchProg
//to learn the switch structure:
//it functions like a multiple if-structure.
//No slack variables.
//How to permute methods.
import java.util.Random;

public class switchProg
{
//Turn on of the random generator
static Random r = new Random();

public static void zero()
{

System.out.print(0);
}

4.3. MERGING PIECES INTO A UNITY 65

public static void one()
{

System.out.print(1);
}

public static void two()
{

System.out.print(2);
}

public static void three()
{

System.out.print(3);
}

public static void four()
{

System.out.print(4);
}

public static void five()
{

System.out.print(5);
}

public static void six()
{

System.out.print(6);
}

public static void seven()
{

System.out.print(7);
}

public static void eight()
{

System.out.print(8);
}

public static void nine()
{

System.out.print(9);
}

66 CHAPTER 4. THE NORMAL AND ASSOCIATED DISTRIBUTIONS

public static void other()
{

System.out.print("Not implemented");
}

// switch multiple selection structure
public static void permutator(int k)
{

switch (k)
{
case 0: zero(); break;
case 1: one(); break;
case 2: two(); break;
case 3: three(); break;
case 4: four(); break;
case 5: five(); break;
case 6: six(); break;
case 7: seven() ; break;
case 8: eight(); break;
case 9: nine(); break;
default: other(); break;
}

}

public static void main(String[] args)
{

System.out.println("My number");
permutator(7);
System.out.println("\n\nVoid number");
permutator(14);
System.out.println("\n\nDigits");

for(int k=0; k<=9; k++) permutator(k);
System.out.println("\n\nDigits in backward order");
for(int k=0; k<=9; k++) permutator(9-k);
System.out.println("\n\nRandom digits");
for(int k=0; k<=9; k++) permutator(r.nextInt(10));

}
}

73. Exercise. Run the program and play with the code.

74. Challenge. Use many ifs else a switch structure to try to merge all
programs that calculate p-values into a single simplified program that executes
all the tasks of all programs. If you succeed, crown yourself with gold: that is
more difficult than getting to the moon.

4.3. MERGING PIECES INTO A UNITY 67

75. The OOP strategy

We have another option to merge our various programs that calculate p-
values for different distributions. It is a powerful generalization of the next
program:

76. The code for a very simple program.

//Program F76 simpleCode
public class simpleCode
{

public static void main(String[] args)
{

int r;
r=5;
System.out.println(" r = " + r);
r=57;
System.out.println(" r = " + r);
}
}

We can interpret this code as a solution to the problem of having Java to
write diverse constants using the same printing instruction. Now, if Java can
do this with constants, we shall ask: Is Java able to do the same but not with
constants but with methods and eventually with complete classes?

The answer is affirmative: the designers of Java implemented this possibility
in two forms: interfaces and abstract classes. We will see here the second
implementation.

77. Abstract classes

Please, forget about this terrible name and fix your attention of the problem
to solve: we must simplify redundant code that execute the same task but over
different objects. The task is to integrate a function. The method that executes
the integration is common for all functions but the method that defines the
function varies over a given set of allowed functions.

The Java solution is as follows:

1. Take a program that executes the task over a given object. Detect what
is the common part to all programs and what is the varying part.

2. Common methods remain in the class but varying methods are just listed
but not implemented.

3. Varying methods are implemented in special classes.

4. There must be a manager class, usually the main class, that directs all the
work.

68 CHAPTER 4. THE NORMAL AND ASSOCIATED DISTRIBUTIONS

Let us execute this program over a toy model.

78. The code for a case of integration.

Our task is to produce a code to integrate in within zero and 1 specific
members of two types of functions. The first is the family of straight lines
y = a+bx, and the second is y = axb. Both families depend on two parameters,
a and b. The idea of integration is of course the very same for both families
but we must adapt the general procedure to the specific circumstances. This
problem is very easy since we know how to integrate those functions analytically:

∫ 1

0
(a+ bx)dx = (ax+ bx2/2)|10 = a+ b/2.∫ 1

0 (ax
b)dx = (axb+1/(b+ 1))|10 = a/(b+ 1).

Let us put this formula into a code which must not be redundant:

//Program F78 AbstractIntegration
//A program that integrates functions
//is encoded.
//Interval of integration from 0 to 1.
//Two functions are allowed:
//a line and a monomial.

public class AbstractIntegration
{

//Outer class is instantiated
static AbstractIntegration a =new AbstractIntegration() ;

//Inner top class that defines commonalities to all tasks
abstract class Function
{
double a;
double b;

//How a Function is initialized
Function(double c1, double c2)
{
a = c1;
b = c2;
}

// Integration depends on the type of function
//and is not implemented, it is just listed.
abstract double integral();

4.3. MERGING PIECES INTO A UNITY 69

}//end of class Function

//Inner class that defines a particular implementation
//of the abstract class Function
class Line extends Function

{
//How a line is initialized
//Coefficients of the line
// a +bx
Line(double a, double b)

{
//The same as the in the top class
super(a, b);

}

//The integral for a line is specified
double integral() {
System.out.print("integral of " + a + " + " +

b + "x in within 0 and 1 = ");
return a + b/2;
}

}//end of class Line

class Monomial extends Function
{

//How a monomial is initialized
//Coefficient and power of the monomial
//axˆb
Monomial(double a, double b)

{
//The same as in the top class

super(a, b);
}

//The integral for a monomial is specified
double integral()
{

System.out.print("integral of " + a + "xˆ" +
b +" in within 0 and 1 = ");

return a/(b+1);
}

}//end of class monomial.

70 CHAPTER 4. THE NORMAL AND ASSOCIATED DISTRIBUTIONS

//General manager:
//the very same instruction processes different functions
//that can be chosen at will.
public static void main(String args[])
{

Line l = a.new Line(9, 5);//9 + 5x
Monomial m = a.new Monomial(10, 8); //10xˆ8
Function f; //Abstract instantiation of Function into f
f = l; //instantiation of f
System.out.println(f.integral());
f = m; //instantiation of f
System.out.println(f.integral());

}
}

79. Exercise. Run the program and play with the code.

The difference of this problem and the one we have with various distributions
is just that we have no analytical formulas for their integration and must proceed
numerically, a hard work made in the previous volume. So, let us proceed step
by step. The fist one is just to recast the code that calculate p-values for the
z-distribution in the new language of abstract classes.

80. The code that uses abstract classes to calculate p-values of the

z-distribution follows:

//Program F80 pValues1
//Reports p- value
//for the z-distribution.
//Combines Simpson’s rule
//with a change of scale.
//Code is recast in the language of abstract classes.
//This is evolution to the full:
//one must get powerful but with a complexity that
//is perfect to resolve specific problems.

public class pValues1
{

//Outer class is instantiated
static pValues1 a = new pValues1();

//This is constant pi
private static final double pi = 3.14159265358979323846;

4.3. MERGING PIECES INTO A UNITY 71

//======Inner top class with commonalities=========
//The methods that eventually can be useful
//to other distributions come here such as they are.
//The methods that are privative of the z distribution
//are defined here as abstract
//and implemented in a specific classes below.
abstract class pValueAbstract
{

//The function that defines z is replaced
//by an abstract type. It is not implemented,
//so we can implement other functions too and
//process them with this very same machinery.
abstract double Function(double t);

//To use this method for another distribution,
//instead of Function(z), write and make a call for your
//new distribution.
double f(double xValue)

{
return Function(xValue);

}

//Returns the integral under the function f
//in within 0 and z. Precision=1/N.
//Simpson’s rule adapted for reuse.
double HalfBodySimpson(double z, long N)

{
double h = z/(2 * N);
long m = N;
double sum = f(0);
for(int j= 1; j<=m; j++)

sum = sum + 4* f((2 * j-1) * h);
for(int j= 1; j<m; j++)

sum = sum + 2* f((2 * j) * h);
sum = sum + f((2 * m) * h);
sum = (h/3) * sum;
return sum;

}

//The area in within zero and z of chosen
//distribution is calculated
//for various degrees of precision.

72 CHAPTER 4. THE NORMAL AND ASSOCIATED DISTRIBUTIONS

double area(double z)
{

z = (Math.sqrt(1+4 * z* z)-1)/(2 * z);
int N;
double answer;
int i = 3;
N = (int) Math.pow(10, i);
answer = HalfBodySimpson(z,N);
return answer;

}

//Returns Psi(e) = p(x < e)
//the cumulative distribution function of e.
//This is abstract because it depends
//on the distribution, it must be
//implemented in the corresponding classes.
abstract double psi(double e);

//Returns the p-value(e) = p(x > e)
//Local implementation of the p-value of e
double pValue(double e)
{

return 1- psi(e);
}

//Local manager
void executor(double testValue)
{

System.out.println("\nTest value = " + testValue);
System.out.print("Simpson’s rule."+

"\nArea = p(0 < x < " + testValue + ") = ");
double area = area(testValue);
System.out.println(area);
//psi(e) = p(x < e)
double psi = psi(testValue);
System.out.println("psi(" + testValue + ") " +

"= p(x < " + testValue + ") = " + psi);
double pValue = pValue(testValue);
System.out.println("p-value(" +

testValue + ") = " +
"p(x > " + testValue + ") = " + pValue);

}

}//end of class pValueAbstract

4.3. MERGING PIECES INTO A UNITY 73

//======Particular class========

//Definition of the z density function
//and exclusive to it methods.
//It is an specification of the pValueAbstract class.
class pVzClass extends pValueAbstract
{

//Constructor: this is the first thing to do
pVzClass()
{

System.out.println("\nz distribution");
}

//Returns Psi(e) = p(x < e)
//the cumulative distribution function of e
double psi(double e)
{

return 0.5 + area(e);
}

//Function is implemented here.
//Returns the transformed density function of the
//standardized normal distribution.
double Function(double t)
{

double z = t/(1-t * t);
double f = 1 /Math.pow(2 * pi, 0.5) * Math.exp(-z * z/2) *

(1+ t * t)/((1-t * t) * (1-t * t));
return f;

}

}//end of class zClass

//General manager:
//We get prepared to use
//the very same instruction
//to process different distributions
//that can be chosen at will.
public static void main(String args[])
{

double testValue = 1.23456789;

74 CHAPTER 4. THE NORMAL AND ASSOCIATED DISTRIBUTIONS

//Particular class is instantiated
pVzClass z = a.new pVzClass();
//Top class is declared
pValueAbstract p;
//Top class is instructed to take
//the form of the particular class
p = z;
//Asked task is made
p.executor(testValue);

}

}//End of main class

81. Exercise. Run the program and play with the code.

Let us see how can we add the capability to process a new distribution.

82. The code augmented to process the t-distribution follows:

//Program F82 pValues2
//Reports p- value
//for the z and t distributions.
//Combines Simpson’s rule
//with a change of scale.
//Code is recast in the language of abstract classes.
//This is evolution to the full:
//one must get powerful but with a complexity that
//is perfect to resolve specific problems.

public class pValues2
{

//Outer class is instantiated
static pValues2 a = new pValues2();

//This is constant pi
private static final double pi = 3.14159265358979323846;

//====== Methods of general use=========

//Returns numb!
private static long factorial (long numb)

{
if (numb <=1) return 1;

else

4.3. MERGING PIECES INTO A UNITY 75

return numb * factorial (numb -1);
}

//Returns the double factorial
private static double doubleFact(double x)
{
if (x <=0) return 1;
else

return x * doubleFact(x -2);
}

//Returns the Gamma function
private static double Gamma(double x)
{

int xRounded = (int) x;
//System.out.println(x + " " + xRounded);
if (xRounded == x)

return factorial (xRounded-1);
else

{
return Math.sqrt(pi) * doubleFact(2 * xRounded -1) /

Math.pow(2,xRounded);
}

}

//======Inner top class with commonalities=========
//The methods that eventually can be useful
//to other distributions come here such as they are.
//The methods that are privative of each distribution
//are defined here as abstract
//and implemented in specific classes below.
abstract class pValueAbstract
{

//Degrees of freedom of the t distribution
double dfT;

//Acquisition of data (abstract declaration)
pValueAbstract(double a)
{

dfT = a;
}

//The function that defines z is replaced

76 CHAPTER 4. THE NORMAL AND ASSOCIATED DISTRIBUTIONS

//by an abstract type. It is not implemented,
//so we can implement other functions too and
//process them with this very same machinery.
abstract double Function(double t);

//To use this method for another distribution,
//instead of Function(z), write and make a call for your
//new distribution.
double f(double xValue)

{
return Function(xValue);

}

//Returns the integral under the function f
//in within 0 and z. Precision=1/N.
//Simpson’s rule adapted for reuse.
double HalfBodySimpson(double z, long N)

{
double h = z/(2 * N);
long m = N;
double sum = f(0);
for(int j= 1; j<=m; j++)

sum = sum + 4* f((2 * j-1) * h);
for(int j= 1; j<m; j++)

sum = sum + 2* f((2 * j) * h);
sum = sum + f((2 * m) * h);
sum = (h/3) * sum;
return sum;

}

//The area in within zero and z of chosen
//distribution is calculated
//for various degrees of precision.
double area(double z)

{
z = (Math.sqrt(1+4 * z* z)-1)/(2 * z);
int N;
double answer;
int i = 3;
N = (int) Math.pow(10, i);
answer = HalfBodySimpson(z,N);
return answer;

}

4.3. MERGING PIECES INTO A UNITY 77

//Returns Psi(e) = p(x < e)
//the cumulative distribution function of e.
//This is abstract because it depends
//on the distribution, it must be
//implemented in the corresponding classes.
abstract double psi(double e);

//Returns the p-value(e) = p(x > e)
//Local implementation of the p-value of e
double pValue(double e)
{

return 1- psi(e);
}

//Local manager
void executor(double testValue)
{

System.out.println("\nTest value = " + testValue);
System.out.print("Simpson’s rule."+

"\nArea = p(0 < x < " + testValue + ") = ");
double area = area(testValue);
System.out.println(area);
//psi(e) = p(x < e)
double psi = psi(testValue);
System.out.println("psi(" + testValue + ") " +

"= p(x < " + testValue + ") = " + psi);
double pValue = pValue(testValue);
System.out.println("p-value(" +

testValue + ") = " +
"p(x > " + testValue + ") = " + pValue);

}

}//end of class pValueAbstract

//======Particular classes========

//The z class.
//Definition of the z density function
//and exclusive to it methods.
//It is an specification of the pValueAbstract class.
class pVzClass extends pValueAbstract
{

78 CHAPTER 4. THE NORMAL AND ASSOCIATED DISTRIBUTIONS

//Constructor: this is the first thing to do
pVzClass(double dfT)
{

//Coordinate values with the top class
super(dfT);
System.out.println("\nz distribution");

}

//Returns Psi(e) = p(x < e)
//the cumulative distribution function of e
double psi(double e)
{

return 0.5 + area(e);
}

//Function is implemented here.
//Returns the transformed density function of the
//standardized normal distribution.
double Function(double t)
{

double z = t/(1-t * t);
double f = 1 /Math.pow(2 * pi, 0.5) * Math.exp(-z * z/2) *

(1+ t * t)/((1-t * t) * (1-t * t));
return f;

}

}//end of class pVzClass

//The t class
//Definition of the t density function
//and exclusive to it methods.
//It is an specification of the pValueAbstract class.
class pVtClass extends pValueAbstract
{

//Constructor: this is the first thing to do
pVtClass(double dfT)
{

//Coordinate values with the top class
super(dfT);
System.out.println("\nt distribution");
System.out.println("t degrees of freedom = " + dfT);

}

4.3. MERGING PIECES INTO A UNITY 79

//Returns Psi(e) = p(x < e)
//the cumulative distribution function of z
double psi(double z)
{

return 0.5 + area(z);
}

//Returns the transformed density function of the
//t distribution with dfT d.f.
double Function(double t)
{

double nu = dfT;
double z = t/(1-t * t);
double f = (Gamma((nu+1)/2) /
(Math.sqrt(pi * nu) * Gamma(nu/2)))

* Math.pow(1+z * z/nu, -(nu+1)/2)

* (1+ t * t)/((1-t * t) * (1-t * t));
return f;

}

}//end of class pVtClass

//General manager:
//We use
//the very same instruction
//to process different distributions
//that can be chosen at will.
public static void main(String args[])
{

double testValue = 1.23456789;
//Degrees of freedom of the t distribution
double dfT = 9;
//Top class is declared
pValueAbstract p;

//Particular classes are instantiated
pVzClass z = a.new pVzClass(dfT);
//Top class is instructed to take
//the form of the particular class
p = z;
//Asked task is made
p.executor(testValue);

80 CHAPTER 4. THE NORMAL AND ASSOCIATED DISTRIBUTIONS

pVtClass t = a.new pVtClass(dfT);
p = t;
//Asked task is made
p.executor(testValue);

}

}//End of main class

83. Exercise. Run the program and play with the code.

84. Exercise. Add to the previous code the possibility to process the χ2

distribution. Test your program with Gnumeric.

85. Exercise. Add to the previous code the possibility to process the F distri-
bution. Test your program with Gnumeric.

86. Overriding. Our purpose in this section was to eliminate repetitions when
various programs that execute the same task but over different objects must be
merged into a single unity. To that aim, we used abstract classes. Anyway,
there are many forms as this can be done. In particular, the style developed
by the Author in given examples and answers is as yet redundant: the psi(..)
method has 4 versions, one in each particular class, but they are repetitions of
only two items. In the general case, the cheapest solution to this problem is to
implement in the abstract class the most frequent version and to redefine locally
the correct version when this contradicts that of the abstract class: redefinitions
in particular classes override those in the top class if these are not static. The
corresponding implementation follows:

//Program F86 pValues5
//Reports p- value
//for the z, t, chi2 and F distributions.
//Combines Simpson’s rule
//with a change of scale.
//Code is recast in the language of abstract classes.
//This is evolution to the full:
//one must get powerful but with a complexity that
//is perfect to resolve specific problems.

public class pValues5
{

//Outer class is instantiated
static pValues5 a = new pValues5();

//This is constant pi

4.3. MERGING PIECES INTO A UNITY 81

private static final double pi = 3.14159265358979323846;

//====== Methods of general use=========

//Returns numb!
private static long factorial (long numb)

{
if (numb <=1) return 1;

else
return numb * factorial (numb -1);

}

//Returns the double factorial
private static double doubleFact(double x)
{
if (x <=0) return 1;
else

return x * doubleFact(x -2);
}

//Returns the Gamma function
private static double Gamma(double x)
{

int xRounded = (int) x;
//System.out.println(x + " " + xRounded);
if (xRounded == x)

return factorial (xRounded-1);
else

{
return Math.sqrt(pi) * doubleFact(2 * xRounded -1) /

Math.pow(2,xRounded);
}

}

//======Inner top class with commonalities=========
//The methods that eventually can be useful
//to other distributions come here such as they are.
//The methods that are privative of each distribution
//are defined here as abstract
//and implemented in specific classes below.
abstract class pValueAbstract

82 CHAPTER 4. THE NORMAL AND ASSOCIATED DISTRIBUTIONS

{
//Degrees of freedom of various distributions
double dfT;
double dfChi2;
double dfFNum;
double dfFDen;

//Acquisition of data (abstract declaration)
pValueAbstract(double a, double b, double c, double d)
{

dfT = a;
dfChi2 = b;
dfFNum = c;
dfFDen = d;

}

//The function that defines z is replaced
//by an abstract type. It is not implemented,
//so we can implement other functions too and
//process them with this very same machinery.
abstract double Function(double t);

//Function might be whatever
double f(double xValue)

{
return Function(xValue);

}

//Returns the integral under the function f
//in within 0 and z. Precision=1/N.
//Simpson’s rule adapted for reuse.
double HalfBodySimpson(double z, long N)

{
double h = z/(2 * N);
long m = N;
double sum = f(0);
for(int j= 1; j<=m; j++)

sum = sum + 4* f((2 * j-1) * h);
for(int j= 1; j<m; j++)

sum = sum + 2* f((2 * j) * h);
sum = sum + f((2 * m) * h);
sum = (h/3) * sum;
return sum;

}

4.3. MERGING PIECES INTO A UNITY 83

//The area in within zero and z of chosen
//distribution is calculated
//for various degrees of precision.
double area(double z)

{
z = (Math.sqrt(1+4 * z* z)-1)/(2 * z);
int N;
double answer;
int i = 3;
N = (int) Math.pow(10, i);
answer = HalfBodySimpson(z,N);
return answer;

}

//Returns Psi(e) = p(x < e)
//the cumulative distribution function of e.
//This is abstract because it depends
//on the distribution, it must be
//implemented in the corresponding classes.

//Returns Psi(e) = p(x < e)
//the cumulative distribution function of e
double psi(double e)
{
return 0.5 + area(e);
}

//Returns the p-value(e) = p(x > e)
//Local implementation of the p-value of e
double pValue(double e)
{

return 1- psi(e);
}

//Local manager
void executor(double testValue)
{

System.out.println("\nTest value = " + testValue);
System.out.print("Simpson’s rule."+

"\nArea = p(0 < x < " + testValue + ") = ");
double area = area(testValue);
System.out.println(area);
//psi(e) = p(x < e)

84 CHAPTER 4. THE NORMAL AND ASSOCIATED DISTRIBUTIONS

double psi = psi(testValue);
System.out.println("psi(" + testValue + ") " +

"= p(x < " + testValue + ") = " + psi);
double pValue = pValue(testValue);
System.out.println("p-value(" +

testValue + ") = " +
"p(x > " + testValue + ") = " + pValue);

}

}//end of class pValueAbstract

//======Particular classes========

//The z class.
//Definition of the z density function
//and exclusive to it methods.
//It is an specification of the pValueAbstract class.
class pVzClass extends pValueAbstract
{

//Constructor: this is the first thing to do
pVzClass(double dfT, double dfChi2,

double dfFNum, double dfFDen)
{

//Coordination with the top class
super(dfT, dfChi2, dfFNum, dfFDen);
System.out.println("\nz distribution");

}

//Function is implemented here.
//Returns the transformed density function of the
//standardized normal distribution.
double Function(double t)
{

double z = t/(1-t * t);
double f = 1 /Math.pow(2 * pi, 0.5) * Math.exp(-z * z/2) *

(1+ t * t)/((1-t * t) * (1-t * t));
return f;

}

}//end of class pVzClass

4.3. MERGING PIECES INTO A UNITY 85

//The t class
//Definition of the t density function
//and exclusive to it methods.
//It is an specification of the pValueAbstract class.
class pVtClass extends pValueAbstract
{

//Constructor: this is the first thing to do
pVtClass(double dfT,double dfChi2,

double dfFNum, double dfFDen)
{

//Coordination with the top class
super(dfT,dfChi2, dfFNum, dfFDen);
System.out.println("\nt distribution");
System.out.println("t degrees of freedom = " + dfT);

}

//Function is implemented here.
//Returns the transformed density function of the
//t distribution with dfT d.f.
double Function(double t)
{

double nu = dfT;
double z = t/(1-t * t);
double f = (Gamma((nu+1)/2) /

(Math.sqrt(pi * nu) * Gamma(nu/2))) *
Math.pow(1+z * z/nu, -(nu+1)/2) * (1+ t * t)/((1-t * t) * (1-t * t));
return f;

}

}//end of class pVtClass

//The chi2 class
//Definition of the Chi2 density function
//and exclusive to it methods.
//It is an specification of the pValueAbstract class.
class pVChi2Class extends pValueAbstract
{

//Constructor: this is the first thing to do
pVChi2Class(double dfT,double dfChi2,

double dfFNum, double dfFDen)

86 CHAPTER 4. THE NORMAL AND ASSOCIATED DISTRIBUTIONS

{
//Coordination with the top class
super(dfT,dfChi2, dfFNum, dfFDen);
System.out.println("\nChi2 distribution");
System.out.println("Chi2 degrees of freedom = " + dfChi2);

}

//Returns Psi(e) = p(x < e)
//the cumulative distribution function of e
double psi(double e)
{

return area(e);
}

//Function is implemented here.
//Returns the transformed density function of the
//chi2 distribution with nu d.f.
double Function(double t)
{

double nu = dfChi2;
double z = t/(1-t * t);
double f = (1 /

(Math.pow(2, nu/2) * Gamma(nu/2)))

* Math.exp(-z/2) * Math.pow(z, (nu-2)/2)

* (1+ t * t)/((1-t * t) * (1-t * t));
return f;

}

}//end of class pVChi2Class

//The F class
//Definition of the Chi2 density function
//and exclusive to it methods.
//It is an specification of the pValueAbstract class.
class pVFClass extends pValueAbstract
{

//Constructor: this is the first thing to do
pVFClass(double dfT,double dfChi2,

double dfFNum, double dfFDen)
{
//Coordination with the top class
super(dfT,dfChi2, dfFNum, dfFDen);

4.3. MERGING PIECES INTO A UNITY 87

System.out.println("\nF distribution");
System.out.println("F degrees of freedom: "

+ "Num = " + dfFNum
+ ", Den = " + dfFDen);

}

//Returns Psi(e) = p(x < e)
//the cumulative distribution function of e
double psi(double e)
{
return area(e);
}

//Function is implemented here.
//Returns the transformed density function of the
//F distribution with dfFNum and dfFDen d.f.
double Function(double t)
{
double nu1 = dfFNum;
double nu2 = dfFDen;
double z = t/(1-t * t);
double f = (Gamma((nu1+nu2)/2) /

(Gamma(nu1/2) * Gamma(nu2/2))) *
Math.pow(nu1, nu1/2) * Math.pow(nu2, nu2/2) *
Math.pow(z, nu1/2-1) /
Math.pow(nu2+nu1 * z, (nu1+nu2)/2)

* (1+ t * t)/((1-t * t) * (1-t * t));
return f;
}

}//end of class pVFClass

//General manager:
//We use
//the very same instruction
//to process different distributions
//that can be chosen at will.
public static void main(String args[])
{

double testValue = 1.23456789;
//Degrees of freedom of the t distribution
double dfT = 9;
//Degrees of freedom of the chi2 distribution
double dfChi2 = 17;

88 CHAPTER 4. THE NORMAL AND ASSOCIATED DISTRIBUTIONS

//Degrees of freedom of the F distribution, numerator
double dfFNum = 4;
//Degrees of freedom of the F distribution, denominator
double dfFDen = 32;
//Top class is declared
pValueAbstract p;

//Particular class z is instantiated
pVzClass z = a.new pVzClass(dfT, dfChi2, dfFNum, dfFDen);
//Top class is instructed to take
//the form of the particular class
p = z;
//Asked task is made
p.executor(testValue);
//Particular class t is instantiated
pVtClass t = a.new pVtClass(dfT, dfChi2, dfFNum, dfFDen);
p = t;
p.executor(testValue);
//Particular class chi2 is instantiated
pVChi2Class chi2 =

a.new pVChi2Class(dfT, dfChi2, dfFNum, dfFDen);
p = chi2;
p.executor(testValue);
//Particular class F is instantiated
pVFClass f =

a.new pVFClass(dfT, dfChi2, dfFNum, dfFDen);
p = f;
p.executor(testValue);

//Test:
//p-values of 1.23456789 by Gnumeric:
//z: 0.10849568277116
//t: 0.12412629591734
//chi2: 0.99999991994117
//F: 0.31591556865765

}

}//End of main class

87. Exercise. Run the program and play with the code.

4.4 Critical values

Our next task is to produce the code to calculate critical values for a given
significance level for the various distributions.

4.4. CRITICAL VALUES 89

88. The code that outputs critical values for the z-distribution follows.

//Program F88 critZ
//Reports critical values
//for a standardized normal distribution
//and a given significance level.
//Combines Simpson’s rule
//with a change of scale.
//An initial approximation is improved
//by analytical hunting.
//Program is encapsulated in an inner class.
//Style = Entangled OOP.
public class critZ
{

//Outer class is instantiated
static critZ a = new critZ();

//===========Inner class ==========

//Reports critical values
//for the z-distribution
class critZInner
{

double pi = 3.14159265358979323846;
double Error;
double jCritic;

//==========Style: reuse===========

//Returns the transformed density function of
//the standardized normal distribution.

double zFunction(double t)
{

double z = t/(1-t * t);
double f = 1 /Math.pow(2 * pi, 0.5) * Math.exp(-z * z/2) *

(1+ t * t)/((1-t * t) * (1-t * t));
return f;

}

//To use this method for another distribution,
//instead of zFunction(z), write and make a call for your
//new distribution.

double f(double x)

90 CHAPTER 4. THE NORMAL AND ASSOCIATED DISTRIBUTIONS

{
double f = zFunction(x);
return f;

}

//Reports the transformed upper u-critical for
//the given distribution.
//Significance level = alpha.
//Precision=1/N.
//Simpson’s rule adapted for reuse.
//The error of approximation is also calculated.
double upperU(double h, double target)

{

double r = h/6;
double sum = 0.5;
jCritic = 0;
for(int j= 0; sum < target; j++)

{
sum = sum +

r * (f(j * h) + 4 * f((j+0.5) * h) + f((j+1) * h));
jCritic = j+1;

}
jCritic = jCritic-1;
double greatSum = sum -

r * (f(jCritic * h) + 4 * f((jCritic+0.5) * h)
+ f((jCritic+1) * h));

Error = target-greatSum;
double uAprox = (jCritic) * h;
return uAprox;

}

//Returns the transformed value z = u/(1-u * u)
double z(double u)

{
double z = u/(1-u * u);
return z;

}

//The wide of subintervals is defined
double h()
{

double u = 1;
int i=3;
long N = (int) Math.pow(10, i);

4.4. CRITICAL VALUES 91

double h = u/N;
return h;

}

//Reports the upper z-critical for
//Significance level = alpha.

double vCrit(double target)
{

double h = h();
double uCritic = upperU(h, target);
double zCritic = z(uCritic);
return zCritic;

}

//======Analytical hunting========
//Precision is augmented.

//Returns the density function of the Z distribution
double ff(double z)

{
double f = Math.exp(-z * z/2)/Math.pow(2 * pi, 0.5);
return f;

}

// Returns F(a,b) = h(f(a) + 4 * f((a+b)/2) + f(b))-Error;
double F(double a, double b)

{
double h = (b-a)/6;
double Fb = h * (ff(a) + 4 * ff((a+b)/2)

+ ff(b))-Error;
return Fb;

}

//Returns the ratio F(zCritic,gi)/ ff(gi)
double ratio(double zCritic, double gi)

{
double ratio = F(zCritic,gi)/ ff(gi) ;
return ratio;

}

//Critical value for the upper tail.
//A professional approximation is found by
//analytical hunting

92 CHAPTER 4. THE NORMAL AND ASSOCIATED DISTRIBUTIONS

double hunting(double zCritic)
{

double h = h();
double ur = (jCritic+1) * h;
//Right border of the critical interval
double rBorder = z(ur);
double gSubi = rBorder;
double gSubiPlus= 0;
int iterations = 0;
int maxIterations = 30;
boolean more = true;
while (more)

{
gSubiPlus = gSubi - ratio(zCritic, gSubi);
iterations = iterations +1;
if (iterations >= maxIterations) more = false;
if (gSubiPlus == gSubi) more = false;
gSubi = gSubiPlus;

}
return gSubiPlus;

}

//Critical value for significance level alpha, one tail
double critical(double alpha)
{

double target = 1-alpha;
double zCritic = vCrit(target);
zCritic = hunting(zCritic);
return zCritic;

}

//Local manager
void managerZ(double alpha)

{
System.out.println("\nZ distribution");
//alpha = 0.05;
System.out.println("Critical values for one tail "

+ "\nof the standardized normal "
+ "distribution. "
+ "\nAlpha = Significance level = "
+ alpha + ".");

System.out.println("zCritic = +/-"
+ critical(alpha));
System.out.println("\nCritical values for two tails "

+ "\nof the standardized normal "

4.4. CRITICAL VALUES 93

+ "distribution."
+ "\nAlpha = Significance level = "
+ alpha + ".");
double alphaHalf = alpha/2;
System.out.println("zCritic = +/-"

+ critical(alphaHalf));
}

}

public static void main(String[] args)
{

//Inner class is instantiated
critZInner zc = a.new critZInner();
//Significance level
double alpha = 0.05;
//critical z is required
zc.managerZ(alpha);

}

//z = -1.64485362695147

}

89. Exercise. Run the program and play with the code. Test its precision
with Gnumeric.

90. Style = entangled OOP.

There are infinitely many styles of software development. The entangled
OOP style encapsulates objects in, say, inner classes but admits global vari-
ables at their interior. One motivation for this can be grasped if we give a look
at the next piece of code:

for(int j= 0; sum < target; j++)
{

sum = sum +
r * (f(j * h) + 4 * f((j+0.5) * h) + f((j+1) * h));

jCritic = j+1;
}

This code calculates two values, sum and jCritic . If we want to output
both variables and remain faithful to the functional paradigm, we must devise
another class, an object, with these two variables. But, this may look as too a
delicate option for a very simple problem. So, we can opt for tolerating those
variables as global ones in within the inner class. This is a perfectly valid option
for OOP.

Another reason for tolerating global variables is that we deal with functions
that depend on parameters. The natural simplicity of proposed tasks lost its

94 CHAPTER 4. THE NORMAL AND ASSOCIATED DISTRIBUTIONS

transparency if we overburden the text with their explicit printing. So, it looks
wise to work with them as global variables to conserve simplicity.

91. Exercise. Compose a program that outputs critical values for the t-
distribution. Test precision with Gnumeric.

92. Exercise. Compose a program that outputs critical values for the Chi2-
distribution. Test precision with Gnumeric.

93. Exercise. Compose a program that outputs critical values for the F -
distribution. Test precision with Gnumeric.

94. Exercise. Merge all previous four programs that calculates critical values
into a single unity.

95. Redundancy in the genome.

We have tried to simplify redundant code but not to complete exhaustion.
Why? The reason is that code is in general highly informative and when it is
deprived of its redundancy, the density of information grows and so it becomes
still more informative. This means that previous information is useless to predict
what will come next. Therefore, the code becomes more random: high levels
of information and randomness are equivalent. This is a mystery that might
suggest that even the most complex information might appear by mere gambling.

Now, oversimplified code is just like hard rock because it is very difficult
to restructure into another form. This means that oversimplified code is very
difficult to correct in the case that it contains bugs. That is why it is not
recommendable to oversimplify code unless thoroughly testing has been carried
on.

Now, we can ask: is the genome simplified, or oversimplified?

Most probably not as the C-paradox compels us to think. TheC-paradox is
the observed fact that the size of the genome does not correlate with complexity.
For instance, the size of the genome of half of gymnosperms species is larger than
those of all mammalian species (Gregory, 2005). In general, the DNA content
is usually constant in any one species while it can vary in different species by
over a million-fold (Cavalier-Smith, 1985).

There are various reasons why the C-paradox is important. The most in-
teresting for us is that evolution is expected to award simplification because of
economic reasons. But there are are other forces trying to enlarge the genome,
say, spontaneous duplications. Some aspects of the intricacies of the ensuing
interaction can be read after Vol 1 of this series with some modifications:

We see that one can extend a satisfiable proposition in infinitely many varied
forms and lengths if one adds sufficiently many new variables. This is a strong
result that is not obvious: one could think that it is highly improbably to
introduce new variables, new genes and functions, without disturbing the actual
functions that enable life. Nevertheless, that can be done and can be done with

4.4. CRITICAL VALUES 95

absolute certainty. In fact, recombination is a natural and permanent operation
in nature, and it can lead to gene duplication. Thus, we think that expansive
forces are always at work upon the genome, trying to enlarge it.

So, evolution would be similar to a female cat, whose neck has been adorned
with a pink strip, and, since the strip is not annoying the cat in any sense, the
cat goes around without taking care of the strip. The genome is predicted in
this way to be overloaded with any sort of nascent genes, whose function is void
or unknown because the cell lacks the substrate for they to work upon.

In ancient times, the prediction of an overloaded genome would be considered
as verified with a simple and direct proof: in eukaryotes there is a code that is
not transcribed, which is highly repetitive and that can be 50000 times as much
as that which is transcribed into RNA. But today, it is anymore secure that the
genome contains junk code: a given pseudo-gene (a modified copy of a functional
gene that does not serve as template for producing a protein) was in ancient
times considered junk DNA, but it is now thought to be important part of the
gene regulative machinery (Lee, 2003). Additionally, according to Arneodo et
al., (1996) that ’junk’ DNA has a clear function: the folding of eukaryotic DNA
into the cell nucleus involves a hierarchy of structures on different length scales
that is determined by self-correlation in DNA, mainly of the so called junk type.

Thus, junk DNA is not a proof that the genome is redundant. At the other
hand, we do know that a simplifying force is under operation, as a study of
parasites shows. A parasite is an organism that takes some elaborated resources
from others living beings, and therefore the genetic programs of parasites, coding
for restricted metabolic pathways, are shorter than those in wild ones. It has
been found that the shorter programs of parasites are more competitive than
entire and large ones of wild varieties:

”The mechanisms of feedback inhibition and/or gene repression which would
help the parental strain to economize are not universal and/or not complete
enough to offset the advantage that the ”defective” strain has in not being
involved at all in this particular biosynthetic process” (Zamenhof et al., 1962).

That parasites have shorter genomes was known since 1887, when Bovery
discovered that Ascaris has in its somatic cells only a part of the chromatin
which is present in the germ line cell nuclei (see Ammermann, 1985).

Viruses is another ”easy case” for selection in favor of simplified genomes:
their code has overlapping genes using different reading frames, overlapping
genes using alternative promoters in the same reading frame and differential
splicing of a single premessenger to produce a variety of polypeptides in aden-
ovirus. Such a proficiency in information packing leads one to think that in a
virus everything is fundamental. In this regard, the following comments that
appear in Cavalier-Smith (1985), and that he attributes to Joklik, are very
illustrative:

”Plasmid DNA and virus chromosomes are always much smaller than cellular
chromosomes. As they lack significant amounts of non-coding DNA reasonably
strong selective forces must exist to prevent its accumulation. For viruses the
nature of this force is fairly obvious. The closed geometry of a viral capsid cannot
contain more than a limited amount of DNA. Moreover capsid size, unlike cell

96 CHAPTER 4. THE NORMAL AND ASSOCIATED DISTRIBUTIONS

size, cannot increase gradually but would have to evolve in major discontinuous
steps that are inherently improbable”. By the same token, he proposes that
”the uniformly low chloroplast genome size is a sign of strong selection against
wasteful noncoding DNA”.

Nonetheless, one cannot think that minimal descriptions are all to nature.
Just consider that if the enzymes responsible for the destruction of poisons are
produced in more abundance, poison neutralization is made faster. This can be
achieved by gene amplification.

One might think that the problem of redundancy of the genome can be
settled once and forever with experimental deletions. It seems that, in general,
large deletions have a greater tendency to be lethal than large duplications
(Cavalier-Smith, l.c. 1985). This seems to imply that the genome is highly
simplified. Nevertheless, experimental deletions (of low size) has shown today
that in S. cerevisiae that are cultivated in rich media less than 20% of genes
are essential, and the large majority of the remaining deletions have little or
no detectable effect on growth. Moreover, similar observations have been made
for other eukaryotes and prokaryotes. Is this discovery a direct solution of the
mystery of the pink strip saying that the genome is highly redundant? Not at all
because a different explanation also must be studied: the genome is functionally
redundant and moreover it has many genes that exist to be used under poor
environments and/or extreme conditions that were not tested anyhow (Ihmels
et al, 2007).

We have now a contrast: on one hand, we have evolution that is in literal
sense open ended and whose fundamental mechanism could be duplicate + adjust
+ delete, but on the other, the very existence of species shows that evolution
has got tired. How do we explain the fatigue of evolution when the possibilities
of evolution are unbounded at any one moment?

Our answer is this: the cell is computing machinery that is always trying
new ways but the problem is that it has not enough computing power to devise
at once the highly functional code that is demanded to synthesize new functions
that are acceptable for selection.

96. Challenge. Make a program to calculate tables of critical values for the
diverse distributions.

97. Exercise. Merge into a single program the code for p-values to that of
critical values.

98. Optional exercise. Use the previous program to update your toolBox6
to version 7. Nevertheless, it might be preferable to make the actualization after
checking that we can correctly plug the various services of this program to coming
needs.

4.5. CONCLUSION 97

4.5 Conclusion

We have developed software to calculate critical and p-values of the four fun-
damental distributions of statistical inference of the normal distribution, z, t,
χ2, F . Our precision seems to fit that of Gnumeric with the exception of the
critical values of the χ2 distribution. To correctly understand what happens
is a challenge for everybody. We have faced the problem of simplifying repeti-
tions in various programs that are merged into a single unity. We have adopted
a professional solution which is based on abstract classes. Let us notice that
abstract classes is an expedite way into high levels of variability.

98 CHAPTER 4. THE NORMAL AND ASSOCIATED DISTRIBUTIONS

Chapter 5

The dictionary of

experiments

The most famous 12 tests.

Statistical inference has as aim to extrapolate conclusions based on ran-
dom samples to propositions that are applied to the entire population. The
problem of making that in a reasonable way is forced here to fit the next uni-
versal format: science is before everything else a contrast between what we see
and what we think or believe. This general format is specialized in many ways
to model specific experiments.

99. Purpose We implement the statistical analysis of the twelve fundamental
experiments of elementary science that are directly tied to the normal, binomial
or multinomial distributions.

5.1 The simplest experiment

Here we study the case in which one picks data, random data, to judge a propo-
sition about the populational mean or to estimate its confidence interval. We
need some notation that will remain valid in the sequel.

100. Notation.

1. Ho the null hypothesis.

2. Ha the alternate hypothesis.

3. µX , µY populational means of variables X and Y .

4. X̄n, mean of sample with n elements.

5. σ the deviation of the population. May have subindixes corresponding to
random variables.

99

100 CHAPTER 5. THE DICTIONARY OF EXPERIMENTS

6. σ2 the variance of the population.

7. σ̂X , σ̂X
2
sample deviation and variance.

8. p, f , g, populational and sample proportions.

9. z(α,2) critical value of the z-distribution for significance α and two tails.
Similar notations for the other distributions.

101. Study of a mean knowing σ

We use the mean of a sample knowing the population variance to judge the
populational mean.

Two tails test: Ho : µx = 20 and Ha : µx 6= 20
One tail test: Ho : µx = 20 and Ha : µx < 20
Stadigraph to measure the discrepancy between what we see X̄n

and what we think or expect µX :

z = X̄n−µX
σX
√

n

If the discrepancy is found to surpass the critical value of the z distribution
associated to the significance, it is recommended to reject the null hypothesis
and to look for another explanation apart from that taken to explain the bulk
of the distribution. If the discrepancy is less than critical value, one is invited
to belief that observed facts are explained by the very same mechanisms that
explain the bulk of the distribution.

Confidence interval for the mean µ:

X̄n − (z(α,2))
σX√
n
< µ < X̄n + (z(α,2))

σX√
n

Number of data necessary to asses the confidence interval with
error E (half of the confidence interval):

n = ((z(α,2))
σX

E)2.

102. The code for a z-test for a mean follows.

//Program F102 zTestOneMean
//Runs a z-test for the mean
//knowing the mean of a random sample
//and the populational variance.
//Confidence interval is also calculated.
public class zTestOneMean
{

//Prints raw data
private static void printData(double xBar, double mu,

5.1. THE SIMPLEST EXPERIMENT 101

double sigma, double n, double alpha)
{

System.out.println("\nz Test to study the null" +
"\nhypothesis about a mean given the mean " +
"\nof a random sample and the standard deviation" +
"\nof the population.\n");
System.out.println("xBar = " + xBar);
System.out.println("mu = " + mu);
System.out.println("sigma = " + sigma);
System.out.println("n = " + n);
System.out.println("alpha = " + alpha);

}

/ * z Test to study the null hypothesis about a mean

* given the mean of a sample and the standard deviation

* of the population. * /
private static double zHoOneMean(double xBar, double mu,
double sigma, double n)

{
System.out.println(
"zExp = (xBar- mu)/(sigma/Math.sqrt(n))");
double zExp = (xBar- mu)/(sigma/Math.sqrt(n));
return zExp;

}

/ * Confidence interval for the mean
given the populational variance * /
private static void intConfMediaZ(double xBar, double mu,
double sigma, double n, double alpha)
{

System.out.println("\nConfidence interval of the mean" +
" \ngiven te populational deviation");

double zCriticTwoTails = 2;
double r = zCriticTwoTails * sigma / Math.sqrt(n);
System.out.println("r = z * sigma / Math.sqrt(n)");
System.out.printf("r = %10.4f \n", r);
double limInf = xBar - r;
double limSup = xBar + r;
System.out.printf("limInf = xBar - r " +

"= %10.4f \n" , limInf);
System.out.printf("limSup = xBar + r " +

"= %10.4f \n", limSup);
}

102 CHAPTER 5. THE DICTIONARY OF EXPERIMENTS

//Standard error of the mean
private static double sError(double sigma, double n)
{

System.out.println("\nStandard error = " +
"sigma/Math.sqrt(n)");

return sigma/Math.sqrt(n);
}

//Needed n = size of the sample
//given tolerance E in the evaluation of the mean.
private static int nNeeded(double sigma, double E)
{

System.out.println("\nTolerance error E = "+ E);
double zCriticTwoTails = 2;
System.out.println("m= " + "zCriticTwoTails * sigma / E ");

double m = zCriticTwoTails * sigma / E;
System.out.println("Needed n = m * m");
//Upwards approximation
return (int) Math.ceil(m * m);

}

/ * Studies about a mean

* given the mean of a sample and the standard deviation

* of the population. * /
private static void zOneMean()

{
//Example 184, pg 169
double xBar = 40;
double mu = 20;
double sigma = 16;
double n = 36;
double alpha = 0.05;
printData(xBar,mu,sigma,n,alpha);
double zCriticTwoTails = 2;
double zCriticOneTail = 1.6;
double zExp = zHoOneMean(xBar,mu,sigma,n);
System.out.printf("zExp = %10.4f \n" , zExp);
System.out.printf("zCritic for TWO TAILS " +

"= +/-%10.4f \n", zCriticTwoTails);
System.out.printf("zCritic for ONE TAIL " +

"= +/-%10.4f \n", zCriticOneTail);
double error = sError(sigma,n);
System.out.printf("Standard error = %10.4f \n", error);
intConfMediaZ(xBar,mu,sigma,n,alpha);
//Admitted tolerance for mu

5.1. THE SIMPLEST EXPERIMENT 103

double E = 5;
int nNeeded = nNeeded(sigma, E);
System.out.printf("Needed n = %10d \n", nNeeded);

}

public static void main(String args[])
{

zOneMean();
}

}

103. Exercise. Run the program and play with the code.

104. Let us plug our z-test for a mean to the code about critical and

p-values:

//Program F104 zTestOneMean2
//Runs a z-test for the mean
//knowing the mean of a random sample
//and the populational variance.
//Confidence interval is calculated.
//Critical and p-values are also calculated.
//Style = global variables.

public class zTestOneMean2
{

//Outer class is instantiated
static zTestOneMean2 a = new zTestOneMean2();

//This is constant pi
private static final double pi = 3.14159265358979323846;

//Symbolic initialization that can be modified
private static double alpha = 0.05;
//Degrees of freedom of the t distribution
private static double dfT = 9;
//Degrees of freedom of the chi2 distribution
private static double dfChi2 = 17;
//Degrees of freedom of the F distribution, numerator
private static double dfFNum = 4;
//Degrees of freedom of the F distribution, denominator
private static double dfFDen = 32;

//====== Methods of general use=========

104 CHAPTER 5. THE DICTIONARY OF EXPERIMENTS

//Returns numb!
private static long factorial (long numb)

{
if (numb <=1) return 1;

else
return numb * factorial (numb -1);

}

//Returns the double factorial
private static double doubleFact(double x)
{
if (x <=0) return 1;
else

return x * doubleFact(x -2);
}

//Returns the Gamma function
private static double Gamma(double x)
{

int xRounded = (int) x;
//System.out.println(x + " " + xRounded);
if (xRounded == x)

return factorial (xRounded-1);
else

{
return Math.sqrt(pi) * doubleFact(2 * xRounded -1) /

Math.pow(2,xRounded);
}

}

//======Inner top class with commonalities=========
//The methods that eventually can be useful
//to other distributions come here such as they are.
//The methods that are privative of each distribution
//are defined here as abstract
//and implemented in specific classes below.
abstract class ValueAbstract
{

double sumzero;
double Error;
double jCritic;
double k;

5.1. THE SIMPLEST EXPERIMENT 105

//The density function is of abstract type.
//It is not implemented,
//so we can implement other functions too and
//process them with this very same machinery.
abstract double f(double t);

//========= p-values==========

//Returns the integral under the function f
//in within 0 and z. Precision=1/N.
//Simpson’s rule adapted for reuse.
double HalfBodySimpson(double z, long N)

{
double h = z/(2 * N);
long m = N;
double sum = f(0);
for(int j= 1; j<=m; j++)

sum = sum + 4* f((2 * j-1) * h);
for(int j= 1; j<m; j++)

sum = sum + 2* f((2 * j) * h);
sum = sum + f((2 * m) * h);
sum = (h/3) * sum;
return sum;

}

//The area in within zero and z of chosen
//distribution is calculated
//for various degrees of precision.
double area(double z)

{
z = (Math.sqrt(1+4 * z* z)-1)/(2 * z);
int N;
double answer;
int i = 3;
N = (int) Math.pow(10, i);
answer = HalfBodySimpson(z,N);
return answer;

}

//Returns Psi(e) = p(x < e)

106 CHAPTER 5. THE DICTIONARY OF EXPERIMENTS

//the cumulative distribution function of e.
//This is abstract because it depends
//on the distribution, it must be
//implemented in the corresponding classes.
double psi(double e)
{
return 0.5 + area(e);
}

//Returns the p-value(e) = p(x > e)
//Local implementation of the p-value of e
double pValue(double e)
{

return 1- psi(e);
}

//Local manager
void pExecutor(double testValue)
{

System.out.println("\nTest value = " + testValue);
System.out.print("Simpson’s rule."+

"\nArea = p(0 < x < " + testValue + ") = ");
double area = area(testValue);
System.out.println(area);
//psi(e) = p(x < e)
double psi = psi(testValue);
System.out.println("psi(" + testValue + ") " +

"= p(x < " + testValue + ") = " + psi);
double pValue = pValue(testValue);
System.out.println("p-value(" +

testValue + ") = " +
"p(x > " + testValue + ") = " + pValue);

}

//========Critical values=====

//Reports the transformed upper u-critical for
//the given distribution.
//Significance level = alpha.
//Precision=1/N.
//Simpson’s rule adapted for reuse.
//The error of approximation is also calculated.
double upperU(double h, double target)
{

5.1. THE SIMPLEST EXPERIMENT 107

double r = h/6;
jCritic = 0;
double sum = sumzero;
for(int j= 0; sum < target; j++)
{

sum = sum +
r * (f(j * h) + 4 * f((j+0.5) * h) + f((j+1) * h));
jCritic = j+1;

}
jCritic = jCritic-1;
double greatSum = sum -

r * (f(jCritic * h) + 4 * f((jCritic+0.5) * h)
+ f((jCritic+1) * h));

Error = target-greatSum;
double uAprox = (jCritic) * h;
return uAprox;
}

//Returns the transformed value z = u/(1-u * u)
double z(double u)
{
double z = u/(1-u * u);
return z;
}

//The wide of subintervals is defined
double h()
{
double u = 1;
int i=3;
long N = (int) Math.pow(10, i);
double h = u/N;
return h;
}

//Reports the upper z-critical for
//Significance level = alpha.
double vCrit(double target)
{
double h = h();
//System.out.println("h = " + h);
double uCritic = upperU(h, target);
double zCritic = z(uCritic);
return zCritic;

108 CHAPTER 5. THE DICTIONARY OF EXPERIMENTS

}

// ***** Analytical hunting *******

//Returns the density function of the distribution
abstract double ff(double z);

//Returns F(a,b) = h(f(a) + 4 * f((a+b)/2) + f(b))-Error;
double F(double a, double b)
{
double h = (b-a)/6;
double Fb = h * (ff(a) + 4 * ff((a+b)/2)

+ ff(b))-Error;
return Fb;
}

//Returns the ratio F(zCritic,gi)/ ff(gi)
double ratio(double zCritic, double gi)
{
double ratio = F(zCritic,gi)/ ff(gi) ;
return ratio;
}

//Critical value for the upper tail.
//A professional approximation is found by
//analytical hunting
double hunting(double zCritic)
{
double h = h();
double ur = (jCritic+1) * h;
//Right border of the critical interval
double rBorder = z(ur);
double gSubi = rBorder;
double gSubiPlus= 0;
int iterations = 0;
int maxIterations = 30;
boolean more = true;
while (more)
{
gSubiPlus = gSubi - ratio(zCritic, gSubi);
iterations = iterations +1;
if (iterations >= maxIterations) more = false;

5.1. THE SIMPLEST EXPERIMENT 109

if (gSubiPlus == gSubi) more = false;
gSubi = gSubiPlus;
}
return gSubiPlus;
}

//Critical value for significance level alpha, one tail
double critical(double alpha)
{
double target = 1-alpha;
double vCritic = vCrit(target);
vCritic = hunting(vCritic);
return vCritic;

}

//Local manager
void critManager(double alpha)
{
System.out.println("\nAlpha = Significance level = "
+ alpha + ".");

System.out.println("Critical values for ONE TAIL = +/-"
+ critical(alpha));

double alphaHalf = alpha/2;
System.out.println("Critical values for TWO TAILS = +/-"

+ critical(alphaHalf));
}

}//end of class pValueAbstract

//======Particular classes========

//The z class.
//Definition of the z density function
//and exclusive to it methods.
//It is an specification of the ValueAbstract class.
class VzClass extends ValueAbstract
{

//Constructor: this is the first thing to do
VzClass()
{

110 CHAPTER 5. THE DICTIONARY OF EXPERIMENTS

sumzero = 0.5; //half bell
System.out.println("\n===== z distribution");

}

//Function f is implemented here.
//Returns the transformed density function of the
//standardized normal distribution.
double f(double t)
{

double z = t/(1-t * t);
double f = 1 /Math.pow(2 * pi, 0.5) * Math.exp(-z * z/2) *

(1+ t * t)/((1-t * t) * (1-t * t));
return f;

}

//Returns the density function of the Z distribution
double ff(double z)
{

double f = Math.exp(-z * z/2)/Math.pow(2 * pi, 0.5);
return f;

}

}//end of class VzClass

//The t class
//Definition of the t density function
//and exclusive to it methods.
//It is an specification of the ValueAbstract class.
class VtClass extends ValueAbstract
{

//Constructor: this is the first thing to do
VtClass()
{

sumzero = 0.5; //half bell
System.out.println("\n===== t distribution");
System.out.println("t degrees of freedom = " + dfT);

}

//Function f is implemented here.

5.1. THE SIMPLEST EXPERIMENT 111

//Returns the transformed density function of the
//t distribution with dfT d.f.
double f(double t)
{

double nu = dfT;
double z = t/(1-t * t);
double f = (Gamma((nu+1)/2) /

(Math.sqrt(pi * nu) * Gamma(nu/2))) *
Math.pow(1+z * z/nu, -(nu+1)/2) * (1+ t * t)/((1-t * t) * (1-t * t));
return f;

}

//Returns the density function of the t-distribution
double ff(double z)
{
double nu = dfT;
double f = (Gamma((nu+1)/2) /

(Math.sqrt(pi * nu) * Gamma(nu/2))) *
Math.pow(1+z * z/nu, -(nu+1)/2) ;

return f;
}

}//end of class VtClass

//The chi2 class
//Definition of the Chi2 density function
//and exclusive to it methods.
//It is an specification of the ValueAbstract class.
class VChi2Class extends ValueAbstract
{

//Constructor: this is the first thing to do
VChi2Class()
{

sumzero = 0; //no negative values
System.out.println("\n===== Chi2 distribution");
System.out.println("Chi2 degrees of freedom = " + dfChi2);

}

//Returns Psi(e) = p(x < e)
//the cumulative distribution function of e
double psi(double e)

112 CHAPTER 5. THE DICTIONARY OF EXPERIMENTS

{
return area(e);

}

//Function f is implemented here.
//Returns the transformed density function of the
//chi2 distribution with nu d.f.
double f(double t)
{

double nu = dfChi2;
double z = t/(1-t * t);
double f = (1 /

(Math.pow(2, nu/2) * Gamma(nu/2)))

* Math.exp(-z/2) * Math.pow(z, (nu-2)/2)

* (1+ t * t)/((1-t * t) * (1-t * t));
return f;

}

//Returns the density function of the chi2-distribution
double ff(double z)
{
double nu = dfChi2;
double f = (1/(Math.pow(2, nu/2) * Gamma(nu/2)))

* Math.exp(-z/2) * Math.pow(z, (nu-2)/2);
return f;
}

//Local manager
void manager(double alpha)
{
System.out.println("Critical values for ONE TAIL "

+ "\nof the chi-square- "
+ "distribution with df = "
+ dfChi2
+ "\nAlpha = Significance level = "
+ alpha + ".");

System.out.println("Lower critical value = "
+ critical(1-alpha));
System.out.println("Upper critical value = "
+ critical(alpha));
System.out.println("\nCritical values for TWO TAILS "

+ "\nof the chi-square "

5.1. THE SIMPLEST EXPERIMENT 113

+ "distribution with df= "
+ dfChi2
+ "\nAlpha = Significance level = "
+ alpha + ".");
double alphaHalf = alpha/2;
double Chi2Menos = critical(1-alphaHalf) ;
System.out.println("Lower critical value = "
+ Chi2Menos);
double Chi2Mas = critical(alphaHalf) ;
System.out.println("Upper critical value = "
+ Chi2Mas);
}
}//end of class pVChi2Class

//The F class
//Definition of the Chi2 density function
//and exclusive to it methods.
//It is an specification of the ValueAbstract class.
class VFClass extends ValueAbstract
{

//Constructor: this is the first thing to do
VFClass()
{
sumzero = 0; //no negative values
double nu1 = dfFNum;
double nu2 = dfFDen;
double a = Math.pow(nu1, nu1/2);
double b = Math.pow(nu2, nu2/2);
double c = beta(nu1/2,nu2/2);
k = a * b / c;
System.out.println("\n===== F distribution");
System.out.println("F degrees of freedom: "

+ "Num = " + dfFNum
+ ", Den = " + dfFDen);

}

//Returns Psi(e) = p(x < e)
//the cumulative distribution function of e
double psi(double e)
{
return area(e);
}

114 CHAPTER 5. THE DICTIONARY OF EXPERIMENTS

//Returns the transformed density function of the
//F distribution with dfFNum and dfFDen d.f.
double f(double t)
{
double nu1 = dfFNum;
double nu2 = dfFDen;
double z = t/(1-t * t);
double f = k * Math.pow(z, nu1/2-1)

* Math.pow(nu2+nu1 * z, -(nu1+nu2)/2)

* ((1+ t * t)/((1-t * t) * (1-t * t))) ;
//System.out.println(f);
return f;
}

//Returns a helping function with d.f. =
//a(num) and b(den)
double g(double x, double a, double b)
{
double g = Math.pow(x, a -1) *

(Math.pow(1-x, b -1));
return g;
}

//Returns the integral under the function f
//in within 0 and u. Precision=1/N.
//Simpson’s rule adapted for reuse.
//a and b are degrees of freedom
double HalfBodySimpsong(double u,
double a, double b, long N)
{
double h = u/(2 * N);
long m = N;
double sum = g(0,a,b);
for(int j= 1; j<=m; j++)

sum = sum + 4* g((2 * j-1) * h,a,b);
for(int j= 1; j<m; j++)

sum = sum + 2* g((2 * j) * h,a,b);
sum = sum + g((2 * m) * h,a,b);
sum = (h/3) * sum;
return sum;
}

5.1. THE SIMPLEST EXPERIMENT 115

//Returns the beta function in integral form
//with a and b d.f.
double beta(double a, double b)
{
double answer;
int i = 4;
int N = (int) Math.pow(10, i);
double u=1;
answer = HalfBodySimpsong(u,a,b,N);
return answer;
}

//Reports the transformed upper u-critical for
//the given distribution.
//Significance level = alpha.
//Precision=1/N.
//Simpson’s rule adapted for reuse.
//The error of approximation is also calculated.
double upperU(double h, double target)
{

double r = h/6;
double sum = 0;
jCritic = 0;
for(int j= 0; sum < target; j++)
{
sum = sum +

r * (f(j * h) + 4 * f((j+0.5) * h) + f((j+1) * h));
jCritic = j+1;
}
jCritic = jCritic-1;
double greatSum = sum -

r * (f(jCritic * h) + 4 * f((jCritic+0.5) * h)
+ f((jCritic+1) * h));

Error = target-greatSum;
double uAprox = (jCritic) * h;
return uAprox;
}

//Returns the density function of the t-distribution
double ff(double z)
{
double nu1 = dfFNum;

116 CHAPTER 5. THE DICTIONARY OF EXPERIMENTS

double nu2 = dfFDen;
double f = k * Math.pow(z, nu1/2-1)

* Math.pow(nu2+nu1 * z, -(nu1+nu2)/2) ;
return f;
}

//Local manager
void manager(double alpha)
{

System.out.println("\nF distribution");
System.out.println("Critical values for ONE TAIL "

+ "\nof the F- "
+ "distribution with df: "
+ dfFNum + " and " + dfFDen+ ", "
+ "\nAlpha = Significance level = "
+ alpha + ".");

System.out.println("Lower critical value = "
+ critical(1-alpha));
System.out.println("Upper critical value = "
+ critical(alpha));

System.out.println("\nCritical values for TWO TAILS "
+ "\nof the f "

+ "distribution."
+ "\nAlpha = Significance level = "
+ alpha + ".");
double alphaHalf = alpha/2;

System.out.println("Lower critical value = "
+ critical(1-alphaHalf));
System.out.println("Upper critical value = "
+ critical(alphaHalf));
}
}//end of class pVFClass

//=======================================
//======== THE 10 MOST USUAL TESTS ======
//=======================================

//======= z test for one mean ===========

//Program F102 zTestOneMean
//Runs a z-test for the mean

5.1. THE SIMPLEST EXPERIMENT 117

//knowing the mean of a random sample
//and the populational variance.
//Confidence interval is also calculated.
public class zTestOneMean
{

void printData(double xBar, double mu,
double sigma, double n, double alpha)
{
System.out.println("\nz Test to study the null" +

"\nhypothesis about a mean given the mean " +
"\nof a random sample and the standard deviation" +
"\nof the population.\n");

System.out.println("xBar = " + xBar);
System.out.println("mu = " + mu);
System.out.println("sigma = " + sigma);
System.out.println("n = " + n);
System.out.println("alpha = " + alpha);
}

/ * z Test to study the null hypothesis about a mean

* given the mean of a sample and the standard deviation

* of the population. * /
double zHoOneMean(double xBar, double mu,
double sigma, double n)
{
System.out.println(

"zExp = (xBar- mu)/(sigma/Math.sqrt(n))");
double zExp = (xBar- mu)/(sigma/Math.sqrt(n));
return zExp;
}

/ * Confidence interval for the mean
given the populational variance * /
void intConfMediaZ(double xBar, double mu,
double sigma, double n, double alpha)
{
System.out.println("\nConfidence interval of the mean" +
" \ngiven the populational deviation");
double zCriticTwoTails = 2;
double r = zCriticTwoTails * sigma / Math.sqrt(n);
System.out.println("r = z * sigma / Math.sqrt(n)");
System.out.printf("r = %10.4f \n", r);
double limInf = xBar - r;

118 CHAPTER 5. THE DICTIONARY OF EXPERIMENTS

double limSup = xBar + r;
System.out.printf("limInf = xBar - r " +

"= %10.4f \n" , limInf);
System.out.printf("limSup = xBar + r " +

"= %10.4f \n", limSup);
}

//Standard error of the mean
double sError(double sigma, double n)
{
System.out.println("\nStandard error = " +
"sigma/Math.sqrt(n)");
return sigma/Math.sqrt(n);
}

//Needed n = size of the sample
//given tolerance E in the evaluation of the mean.
int nNeeded(double sigma, double E)
{
System.out.println("\nTolerance error E = "+ E);
double zCriticTwoTails = 2;
System.out.println("m= " + "zCriticTwoTails * sigma / E ");

double m = zCriticTwoTails * sigma / E;
System.out.println("Needed n = m * m");
//Upwards approximation
return (int) Math.ceil(m * m);
}

/ * Studies about a mean

* given the mean of a sample and the standard deviation

* of the population. * /
void zOneMean()
{

}

}//End of zTestOneMean

//General manager:

public static void ztestOneMean()
{

//Example 184, pg 169
double xBar = 40;

5.1. THE SIMPLEST EXPERIMENT 119

double mu = 20;
double sigma = 16;
double n = 36;
alpha = 0.05;
//Top class is declared
ValueAbstract p;
//Particular class z is instantiated
VzClass z = a.new VzClass();
//Top class is instructed to take
//the form of the particular class
p = z;

//======z-test for the mean ========
zTestOneMean b = a.new zTestOneMean();

b.printData(xBar,mu,sigma,n,alpha);
//Critical values
double zCriticOneTail = p.critical(alpha);
double alphaHalf = alpha/2;
double zCriticTwoTails = p.critical(alphaHalf);
//z-test
double zExp = b.zHoOneMean(xBar,mu,sigma,n);
System.out.printf("zExp = %10.4f \n" , zExp);
double pValue = p.pValue(zExp);
System.out.println("p-value(" +

zExp + ") = " +
"p(x > " + zExp + ") = " + pValue);

System.out.printf("zCritic for TWO TAILS " +
"= +/-%10.4f \n", zCriticTwoTails);

System.out.printf("zCritic for ONE TAIL " +
"= +/-%10.4f \n", zCriticOneTail);

//Standard error
double error = b.sError(sigma,n);
System.out.printf("Standard error = %10.4f \n", error);
//Confidence interval
b.intConfMediaZ(xBar,mu,sigma,n,alpha);
//Admitted tolerance for mu
double E = 5;
//Size of sample to attain tolerance E
int nNeeded = b.nNeeded(sigma, E);
System.out.printf("Needed n = %10d \n", nNeeded);

}

public static void main(String args[])
{

ztestOneMean();

120 CHAPTER 5. THE DICTIONARY OF EXPERIMENTS

}
}//End of main class

105. Exercise. Run the program and play with the code.

106. Let us update our toolBox6 to version 7.

//Program F106 toolBox7
/ *

This is a tool box of methods to calculate
a) some statistics of a list of data,
b) the pstricks code for a bar diagram,
c) the binomial distribution and its critical values,
d) a z-test for one mean.

How to use this program:

1. Append it to any project and run it.
2. This program is a tool box because its main method

can be filled with any allowed method taken from the
demo.

3. Most relevant allowed methods can be listed in the main
but only one must be activated, all others must be
muted.

4. To silence one method, append // as a prefix.
To activate a method, delete the prefix //.

5. For a given task, choose the best suited method
among the diverse variants.

6. To run a method with your own data,
modify the inbuilt data according to your needs.

7. This first version has just one aim:
To implement fundamental tasks as transparently
as possible. So, it looks rather like an array of
independent, non interacting methods.

8. To inquire about unknown terms, drag the mouse over
the term and wait until Eclipse displays the
corresponding documentation.

9. To go from the name of a
method to its implementation:

Pose the cursor at the end of the line
with the name of the method and press the space bar,
next press F3: you will be transported to the
implementation of the method.

10. To mark a specific site in the program:
-Activate line numbering.
-Pose the cursor over the line you want to mark.

5.1. THE SIMPLEST EXPERIMENT 121

-Go to the corresponding number at the left margin
of the Editor Window and right click.

-Choose the Add Bookmark menu and punch it.
-A blue marker will appear in the right margin of the

Editor Window. By clicking over it, one can
return to the desired place.
One can also play with the menu
Window -> ShowView -> Outline.
A list with all methods will appear:
click over any one and you will
transported to the corresponding place
along the text of the program.

We follow our text in
Elementary Statistics Vol I version 7.

* /

public class toolBox7
{

//The outer application is instantiated
private static toolBox7 a = new toolBox7();
//Top abstract class is declared
private static ValueAbstract p;
//Particular class z is instantiated
private static VzClass z = a.new VzClass();

//=============================
//MAIN--MAIN--MAIN--MAIN--MAIN
//=============================

public static void main(String[] args)
{

demo();
}

//Demo
public static void demo()

{
meanVarList();
meanVarFreqTable();
meanVarCumTable();
groupData();

122 CHAPTER 5. THE DICTIONARY OF EXPERIMENTS

codePSTricks();
binomialDistribution();
zTestOneMean();

}

//==
// IMPLEMENTATIONS
//==

//==
// Methods of general use
//==

//Prints a separator
private static void separator()

{
System.out.println("\n======== * =========\n");

}

//Prints a list and its title
private static void printList(double DataVector[],

String title)
{

System.out.println("\n " + title);
int nData = DataVector.length;
boolean go = true;
int nCols = 10;
int nRows = 9;
int counter = 0;
for (int i = 0; (i < nRows) & go; i++)

{
for (int j = 0; (j < nCols) & go; j++)

{
System.out.print(DataVector[i * 10 + j] + " ");
if (counter >= nData-1) go = false;
counter = counter+1;

}
System.out.println();

}
System.out.print("\nNumber of data = " +nData + "\n");

}

5.1. THE SIMPLEST EXPERIMENT 123

//Prints n data in vector
private static void printVector(double Vect[], int n)
{

//System.out.println("Data are");
for (int i = 0; i < n; i++)

System.out.println(i + "\t" + Vect[i]);
}

//Sums data in vector with real numbers
private static double sumVector(double Vect[], int n)
{

double sum = 0;
for (int i = 0; i < n; i++)
sum = sum + Vect[i];
return sum;

}

//Prints a matrix and is title
private static void printMatrix(double Matrix[][],

String title)
{

System.out.println(title);
int m = Matrix.length;

for (int i = 0; i < m; i++)
System.out.println(Matrix[i][0]+

"\t "+ Matrix[i][1]);
}

//Documentation is printed
private static void explanation()
{

System.out.println("\nCoeff around 0.01, " +
"homogeneous population." +
"\nCoeff around 0.1, " +
" +/- homogeneous population."+
"\nCoeff around 0.5, " +
" heterogenous population.");

}

//==
// MEAN AND VAR O A LIST OF DATA
//==

124 CHAPTER 5. THE DICTIONARY OF EXPERIMENTS

//======== Inner class definition=======

//This inner class defines a new type: Table.
//It converts array F (two dimensional) into
//a class or object, ready for reuse.
private class Table
{

//The class Table fundamentally has three elements:
//a matrix with two columns and its length,
//which is the number of rows and
//the titles of columns.
int length;
String[] Titles = { "x", "x2 = xˆ2"};
double M[][] = new double[2000][2];

//The input of Table is defined here
//by means of an initialization procedure
//that is called constructor.
//The natural input is the raw data,
//which is consigned in a one dimensional array.
Table(double[] V)
{

length = V.length;
//The matrix M of Table is initialized
//Raw data go in the first column.
//Squares in the second.
for(int i = 0; i < length; i++)
{

M[i][0] = V[i];
M[i][1] = V[i] * V[i];

}
}

//Data of column k are summed.
//The input is a table, the output is of type double.
private double sum(Table T, int k)
{

double sum = 0;
for(int i = 0; i < T.length; i++)

sum = sum + T.M[i][k];
return sum;

}

5.1. THE SIMPLEST EXPERIMENT 125

private void printTable(Table T)
{

System.out.printf("%n %10s %11s",
T.Titles [0], T.Titles [1]);

for (int i = 0; i < T.length; i++)
System.out.printf("%n %10.3f %10.3f ",

T.M[i][0], T.M[i][1]);
System.out.println();

}
}//end of inner class

//=== Methods of the outer class ===

//This is the core of the main class
//Here, commands are given to execute the overall task.
private static void meanVarVector(double[] V)
{

//A table is declared
Table T = a.new Table(V);
T.printTable(T);
double sumx = T.sum(T,0);
int n = T.length;
double mean = sumx/ n;
double sumx2 = T.sum(T,1);
System.out.printf("%n Sum %6.3f %10.3f ",

sumx, sumx2);
System.out.print("\n \n");
System.out.println("n = number of data = " + n);

System.out.println("\nsumx = " + sumx);
System.out.println("Mean = sumx / n");
System.out.println("Mean = " + mean);
System.out.println("sumx2 = " + sumx2);
System.out.println("variance = " +

"(n * sumx2 - sumx * sumx)/ (n * (n-1))");
double var = (n * sumx2 - sumx * sumx)/ (n * (n-1));
System.out.println("Variance = "+ var);
double deviation = Math.pow(var, 0.5);
System.out.println("Deviation = "+ deviation);
double coeffVar = deviation/mean;
System.out.println("Coefficient of variation " +

"= deviation/mean");
System.out.println("Coefficient of variation = "

+ coeffVar);

126 CHAPTER 5. THE DICTIONARY OF EXPERIMENTS

explanation();
}

//A list of data is processed
private static void meanVarList()
{

System.out.println("\n\n");
System.out.println("MEAN AND VAR OF A LIST OF DATA");
//Example 19 page 9.
double List[] = {5, 3, 4.5, 2};
//Prints list and title
printList(List, "Raw data");
System.out.println("\nTABLE WITH x AND ITS SQUARE");
meanVarVector(List);
separator();

}

//=== =
// MEAN AND VAR OF A TABLE OF ABSOLUTE FREQUENCIES
//=== =

//======== Inner class definition=======

//This inner class defines a new type: Table.
//It converts array F (two dimensional) into
//a class or object, ready for reuse.
private class TableFreq

{
//The class Table has two main elements:
//1) The titles of the columns, whose length
//gives the number of columns.
//2) A matrix, whose length is the number of rows.

String[] Titles = { "x", "F", "xF", "x2F"};
double M[][] = new double[2000][Titles.length];
int nRows;
//The input of Table is defined here
//by means of an initialization procedure
//that is called constructor.
//The natural input is the frequency table
//which is consigned in a matrix FT with 2 columns.
TableFreq(double[][] FT)

{
nRows = FT.length;
//The matrix M of Table is initialized

5.1. THE SIMPLEST EXPERIMENT 127

//Raw data go in columns 0 and 1.
//Squares in the second.
for(int i = 0; i < nRows; i++)
{

M[i][0] = FT[i][0];
M[i][1] = FT[i][1];
M[i][2] = M[i][0] * M[i][1];
M[i][3] = M[i][0] * M[i][2];

}
}

//Data of column k are summed.
//The input is a table, the output is of type double.
private double sum(TableFreq T, int k)

{
double sum = 0;
for(int i = 0; i < T.nRows; i++)
sum = sum + T.M[i][k];
return sum;

}

private void printTable(TableFreq T)
{

System.out.println("\nExtended matrix to " +
"calculate variance:");

System.out.printf("%n %10s %10s %10s %10s",
T.Titles [0], T.Titles [1],

T.Titles [2],T.Titles [3]);
for (int i = 0; i < T.nRows; i++)

System.out.printf(
"%n %10.3f %10.3f %10.3f %10.3f ",
T.M[i][0], T.M[i][1], T.M[i][2], T.M[i][3]);

System.out.println();
}

}//end of inner class

//=== Methods of the outer class ===

// Mean and variance of a frequency table
private static void meanVarFreqTable(double FreqTable[] [])
{

//A table is declared
TableFreq T = a.new TableFreq(FreqTable);

128 CHAPTER 5. THE DICTIONARY OF EXPERIMENTS

T.printTable(T);
double n = T.sum(T,1);
double sumxF = T.sum(T,2);
double sumx2F = T.sum(T,3);
System.out.printf("Sum %18.3f %10.3f %10.3f ",

n, sumxF, sumx2F);
double mean = sumxF/ n;
System.out.print(

"\n\n n = Number of objects = sum F = "+ (int) n);
System.out.printf("\n sum xF = %10.3f ", sumxF);
System.out.printf("\n sum x2F = %10.3f ", sumx2F);
System.out.printf("\n Mean = sum xF / n = %10.3f ", mean);
double Sxx = sumx2F - Math.pow(sumxF, 2)/n;
System.out.printf(
"\n Sxx = sum x2F - (sumxF)ˆ2 /n = %10.3f ", Sxx);
double var = Sxx / (n-1);
System.out.printf(
"\n Variance = Sxx/(n-1) = %10.3f ", var);
double deviation = Math.sqrt(var);
System.out.printf(
"\n Deviation = %10.3f ", deviation);
double c = deviation/ mean;
System.out.printf(

"\n Coefficient of variation = %10.3f \n", c);
explanation();

}

//A Frequency Table is processed
private static void meanVarFreqTable()
{

System.out.println("\n\n");
System.out.println("\n\nMEAN-VAR OF A FREQUENCY TABLE") ;
//Frequency table: first coordinate = class marker
//second coordinate = frequency

//Example 20, pag 10
double FreqT[][] =

{{4, 3},
{7, 6},
{10, 10},
{13, 15},
{16, 4},
{19, 2}};

printMatrix(FreqT, "\n Raw data");

5.1. THE SIMPLEST EXPERIMENT 129

meanVarFreqTable(FreqT);
separator();

}

//=== =
//MEAN AND VAR OF A TABLE OF CUMULATIVE FREQUENCIES
//=== =

private static void meanVarCumTable(double[][] cumFreqT)
{

printMatrix(cumFreqT, "\n Raw data");
//Absolute frequencies are calculated
//and kept in FreqT, a matrix with two columns.
double FreqT[][] = new double[cumFreqT.length][2];

FreqT[0] = cumFreqT[0];
int lx = cumFreqT.length;
for(int i = 1; i < lx; i++)
{

FreqT[i][0] = cumFreqT[i][0];
FreqT[i][1] = cumFreqT[i][1]-cumFreqT[i-1][1];

}
System.out.println("\n\n");
System.out.println(
"\n MEAN-VAR OF ASSOCIATED FREQUENCY TABLE");

meanVarFreqTable(FreqT);//reuse
}

//A cumulative frequency table is processed
public static void meanVarCumTable()
{

System.out.println(
"MEAN-VAR OF A CUMULATIVE FREQUENCY TABLE");
//Cumulative table: first coordinate = class marker
//second coordinate = cumulative frequency

//Problem 1 of version 1, pag 42.
double cumFreqT[][] =

{{32,7},
{40,12},
{45,17},
{50,45},
{55,52},
{60,58}};

130 CHAPTER 5. THE DICTIONARY OF EXPERIMENTS

meanVarCumTable(cumFreqT);
separator();

}

//=== =
// GROUPING OF DATA IN INTERVALS + MEAN & VAR
//=== =

//List is the input, a frequency table is the output
private static double[][] group(double List[],

double Borders[], double classMarkers[])
{

int nClasses = classMarkers.length;
double FreqTable[][] = new double[nClasses][2];
int nData = List.length;

for(int j=0; j < nClasses; j++)
{

FreqTable[j][0] = classMarkers[j];
FreqTable[j][1] = 0;

}
for(int i=0; i< nData; i++)

{
for(int j=0; j < nClasses; j++)

{
if((Borders[j] <= List[i]) & (List[i] < Borders[j+1]))
FreqTable[j][1] =FreqTable[j][1] +1;

}

}

return FreqTable;
}

//Data is grouped into a frequency table.
//The borders and class marker of each interval
//is calculated.
//Final output = Mean and var of the freq table.
private static void group(double List[],

5.1. THE SIMPLEST EXPERIMENT 131

double infLimit, double intervalLength)
{

//Calculate minimal value of data
double min = List[0];
for(int j=1; j < List.length; j++)

if (List[j] < min) min = List[j];
//Calculate maximal value of data
double max = List[0];
for(int j=1; j < List.length; j++)

if (List[j] > max) max = List[j];
System.out.println("\nMax value = " + max);
//Calculates number of classes
int nClasses = (int) ((max- infLimit)/intervalLength)+1;
System.out.println("Number of classes = " + nClasses);
//Calculates interval borders and class markers
//Grouping mode 2: defines inferior limit and length
//of intervals.
double classMarkers[] = new double[nClasses];
double Borders[] = new double[nClasses+2];
Borders[0] = infLimit;
classMarkers[0] = infLimit + intervalLength/2;
for(int j=1; j < nClasses; j++)

classMarkers[j] = classMarkers[j-1] + intervalLength;
for(int j=1; j <= nClasses+1; j++)

Borders[j] = Borders[j-1] + intervalLength;
System.out.println("\nBorders are");
printVector(Borders,nClasses+1);
System.out.println("\nClass markers are");
printVector(classMarkers,nClasses);

double FreqTable[][] = new double[nClasses][2];
System.out.println(
"\nEXTENDED TABLE OF ABSOLUTE FREQUENCIES");
//reuse
FreqTable = group(List, Borders, classMarkers);
meanVarFreqTable(FreqTable);

}

public static void groupM1()
{
//Declaration of data:
//observed values as a list
//Example 24 pag 12
double List[] =
{
48.5, 49.2, 51.0, 50.9, 48.7, 50.5, 49.5, 50.8, 50.0, 51.1,

132 CHAPTER 5. THE DICTIONARY OF EXPERIMENTS

50.7, 51.1, 49.3, 49.1, 50.0, 48.7, 51.2, 49.2, 49.0, 49.3,
49.1, 48.7, 48.6, 49.2, 49.9, 50.1, 50.1, 50.9, 52.4, 50.2,
49.5, 50.9, 51.4, 49.7, 49.8, 50.8, 50.3, 51.8, 50.0, 51.1,
51.3, 50.1, 50.4, 51.1, 49.8, 49.8, 50.1, 50.7, 50.1, 49.9,
49.7, 51.1, 49.7, 49.9, 49.8, 50.5, 49.7, 50.8, 50.7, 50.7,
50.8, 51.5, 51.0
};

System.out.println("\n\n");
System.out.println("FROM DATA LIST TO FREQUENCY TABLE:") ;
printList(List, "Raw data");
//Borders of the intervals
double Borders[] = {48.5, 49.5, 50.5, 51.5, 52.5};
double classMarkers[] = {49, 50, 51, 52};
int nClasses = classMarkers.length;
double FreqTable[][] = new double[nClasses][2];
printList(Borders, "Borders of intervals");
printList(classMarkers, "Class markers");
FreqTable = group(List, Borders, classMarkers);
meanVarFreqTable(FreqTable);

}

public static void groupM2()
{

//Declaration of data:
//observed values as a list
//Example 24 pag 12
double List[] =

{
48.5, 49.2, 51.0, 50.9, 48.7, 50.5, 49.5, 50.8, 50.0, 51.1,
50.7, 51.1, 49.3, 49.1, 50.0, 48.7, 51.2, 49.2, 49.0, 49.3,
49.1, 48.7, 48.6, 49.2, 49.9, 50.1, 50.1, 50.9, 52.4, 50.2,
49.5, 50.9, 51.4, 49.7, 49.8, 50.8, 50.3, 51.8, 50.0, 51.1,
51.3, 50.1, 50.4, 51.1, 49.8, 49.8, 50.1, 50.7, 50.1, 49.9,
49.7, 51.1, 49.7, 49.9, 49.8, 50.5, 49.7, 50.8, 50.7, 50.7,
50.8, 51.5, 51.0

};
System.out.println("\n\n");
System.out.println("FROM DATA LIST TO FREQUENCY TABLE:") ;
printList(List, "Raw data");

//Calculate minimal value of data
double min = List[0];
for(int j=1; j < List.length; j++)

if (List[j] < min) min = List[j];

5.1. THE SIMPLEST EXPERIMENT 133

System.out.println("\nMin value = " + min);

double infLimit = min;
//Interval length
double intervalLength = 1;
System.out.println("Inferior limit = " + infLimit);
System.out.println("Interval length = "

+ intervalLength);
group(List, infLimit, intervalLength);

}

//Data is grouped and processed
public static void groupData()
{

//Method 1: all borders and class markers
// are given by hand.
groupM1();
//Method 1: inferior border of first interval and
//the length of intervals are given.
groupM2();
separator();

}

// ****************************
//Pstricks code
// ****************************

//Produces the pstricks code for the bar graph
//of a frequency table
public static void makeCode(double FreqTable[][])
{

System.out.println("\nPSTRICKS code for the FreqTable\n ");
int n = FreqTable.length;
//Width of each column
double deltaX = 4;
//The minimum x-coordinate is found
double Minxx = 1000;
for (int i = 0; i < n; i++)

if (FreqTable[i][0] < Minxx)
Minxx = FreqTable[i][0];

int Minxxx = (int) (deltaX * Minxx - deltaX);

134 CHAPTER 5. THE DICTIONARY OF EXPERIMENTS

//The maximum x-coordinate is found
double Maxx = 0;
for (int i = 0; i < n; i++)

if (FreqTable[i][0] > Maxx)
Maxx = FreqTable[i][0];

int Maxxx = (int) (deltaX * Maxx + deltaX);
//The maximum y-coordinate is found
int Maxyy = 0;
for (int i = 0; i < n; i++)

if (FreqTable[i][1] > Maxyy)
Maxyy = (int) FreqTable[i][1] + 2;

//Starting clause
//x- and y-units.
//The needed space is defined
System.out.println("\\begin{center}" +

"\n\\psset{xunit=0.15,yunit=0.3}" +
"\n\\begin{pspicture}(" + Minxxx +",0)(" +
Maxxx+ "," + Maxyy+")");
//A rectangle is drawn for each entry in the
//frequency table

int lim1,lim2;
for (int i = 0; i < n; i++)

{
lim1 = (int) (deltaX * FreqTable[i][0] -deltaX/2);
lim2 = (int) (lim1 + deltaX);
System.out.print(

"\n\\psline("+ lim1 + ",0)" +
"("+lim1 +"," + FreqTable[i][1]+ ")" +
"("+lim2 + ","+ FreqTable[i][1]+ ")" +
"("+lim2 + ","+ "0)"

);
}

//Horizontal axis
System.out.println("\n\\psline(" +

Minxxx +",0)("+ Maxxx + ",0)");

//Class markers (first coordinates) are indicated
for (int i = 0; i < n; i++)

{
int xposition = (int) (deltaX * FreqTable[i][0]);
int yposition = - 1;

System.out.print
(

"\n\\rput * ("+ xposition + "," + yposition+ "){"+

5.1. THE SIMPLEST EXPERIMENT 135

(int) (FreqTable[i][0])+ "}"
);

}
System.out.println();

//Labels for heights (second coordinates) are indicated
for (int i = 0; i < n; i++)

{
int xposition = (int) (deltaX * FreqTable[i][0]);
int yposition = (int) (1+ FreqTable[i][1]);
System.out.print

(
"\n\\rput * ("+ xposition + "," + yposition+ "){" +

(int) (FreqTable[i][1])+ "}"
);
}

//End clause
System.out.println("\n\\end{pspicture}");
System.out.println("\\end{center}");
}

public static void codePSTricks()
{

System.out.println("\n\nPSTRICKS CODE FOR A BAR DIAGRAM");
double FreqT[][] =

{{3, 3},
{4, 3},
{5, 2},
{6, 2},
{7, 1},
{8, 1}};

printMatrix(FreqT, "\n\nFREQUENCY TABLE");
makeCode(FreqT);
separator();
}

//=== =
// BINOMIAL DISTRIBUTION
//=== =

//The binomial distribution
//for n repeats

136 CHAPTER 5. THE DICTIONARY OF EXPERIMENTS

//probability of head p,
//amplification factor F.
//Arithmetic trickery in action.
private static double[] binomialDistribution(int n,

double p, double F)
{

double pBinomial[] = new double[n+1];
double pBinomialF[] = new double[n+1];
double CoefficientsBinomial[] = new double[n+1];
double biCoeff = 1;
CoefficientsBinomial[0] = biCoeff;
for(int r = 1; r < n+1; r++)

{
biCoeff = biCoeff * (n+1-r) / r;
CoefficientsBinomial[r] = biCoeff;

}
System.out.println("\nCoefficients ");
printVector(CoefficientsBinomial,n+1);
System.out.println("Sum = " +

sumVector(CoefficientsBinomial,n+1));

for(int r = 0; r < n+1; r++)
{

pBinomial[r] = CoefficientsBinomial[r] *
Math.exp(r * Math.log(p) + (n-r) * Math.log(1-p));

}
System.out.println("\nProbabilities for 0,1,2...");
System.out.println("Paste this vector to Excel" +

" and make a graphic");
printVector(pBinomial,n+1);
sumVector(pBinomial,n+1);
System.out.println("Sum = "

+ sumVector(pBinomial,n+1));
for(int k = 0; k < n+1; k++)
pBinomialF[k] = F * pBinomial[k];
System.out.println("\nAbsolute frequencies for F = " + F);
printVector(pBinomialF,n+1);
System.out.println("Sum = " +

sumVector(pBinomialF,n+1));
return pBinomial;

}

//Probability of closed region (extremes included)
private static double pClosedRegion(int limitInf,

int limitMax,
double[] pBinomial)

5.1. THE SIMPLEST EXPERIMENT 137

{
double sum =0;
for(int r = limitInf; r <= limitMax; r++)

sum = sum + pBinomial[r];
return sum;

}

//Detailed computation of the mean
private static void detailedMean(int n,

double p,
double[] pBinomial)

{
System.out.println("\nDetailed mean: xp(x)");
double sum =0;
double term;
for(int r = 0; r < n+1; r++)
{

term = r * pBinomial[r];
System.out.println(r + " " + term) ;
sum = sum +term;

}
System.out.println("mean = sum xp(x) = " + sum) ;
System.out.println("Expected mean = np = " + n * p) ;

}

//Detailed computation of the variance
private static void detailedVariance(int n,

double p,
double[] pBinomial)

{
System.out.println("\nDetailed variance: " +

"(x-mean) * (-mean) * p(x)");
double sum =0;
double term;
for(int r = 0; r < n+1; r++)
{

term = Math.pow(r- n * p,2) * pBinomial[r];
System.out.println(r + " " + term) ;
sum = sum +term;

}
System.out.println("Variance = " +

"sum (x-mean) * (-mean) * p(x) = " + sum) ;
System.out.println(

"Expected var = np(1-p) = " + n * p* (1-p)) ;
System.out.println("Deviation = " + Math.sqrt(sum));

}

138 CHAPTER 5. THE DICTIONARY OF EXPERIMENTS

//Critical value for significance level alpha, one tail
private static void critical1(double[] pBinomial,

double alpha)
{

int numbTails = 1;
System.out.println("\nLower tail");
double cumulative = 0;
double target = alpha;
int i=-1;
while(cumulative < target)
{

i = i+1;
cumulative = cumulative + pBinomial[i];
System.out.println(i + " cumulative = " + cumulative);

}
System.out.println("To cumulate in the lower tail "

+ target
+ ", \nwe need the first " + i + " Terms.");

System.out.println("The critical value for alpha = "
+ alpha
+ ", numb of tails = " + numbTails
+ "\nin the lower tail is "
+ i+ ". All terms below it are extreme.\n");

System.out.println("Upper tail");
int n = pBinomial.length;
i= n;
cumulative = 0;
while(cumulative < target)

{
i = i-1;
cumulative = cumulative + pBinomial[i];
System.out.println(i + " cumulative = " + cumulative);

}

System.out.println("To cumulate in the upper tail "
+ target

+ ", \nwe need term " + i + " and above.");
System.out.println("The critical value for alpha = "

+ alpha
+ ", numb of tails = " + numbTails
+ "\nin the upper tail is "
+ i + ". All terms above it are extreme.\n");

}

5.1. THE SIMPLEST EXPERIMENT 139

//Critical value for significance level alpha, two tails
private static void critical2(double[] pBinomial,

double alpha)
{

critical1(pBinomial,alpha/2);
}

//Main of binomial distribution
private static void binomialDist(int n, double p, int F)
{

double pBinomial[] = new double[n+1];
System.out.println("n= " + n);
System.out.println("p = " + p);
System.out.println("F = " + F);
pBinomial = binomialDistribution(n,p, F);
detailedMean(n,p,pBinomial);
detailedVariance(n,p,pBinomial);
//Probability of a closed region (extremes included)
int limitInf = 2;
int limitMax = 4;
double pR = pClosedRegion(limitInf,limitMax,pBinomial) ;
System.out.println("\nProb of closed region in " +

"within "+ limitInf + " and " + limitMax +
",\nextremes included = " + pR) ;

}

//Critical values for a given
//significance level
private static void criticalValues(int n, double p,

double alpha)
{

double pBinomial[] = new double[n+1];
pBinomial = binomialDistribution(n,p, 1);
System.out.println("Binomial distribution: \n" +

" n = " + n + ", p = " + p + ", " +
"significance level = alpha = " + alpha);

System.out.println("\nCRITICAL VALUES");
System.out.println("\nONE TAIL, alpha = " +alpha);
System.out.println("\nTerms and cumulative values");
critical1(pBinomial,alpha);
//critical1(n,p, alpha);
System.out.println("\nTWO TAILS, alpha = " +alpha);
System.out.println("\nTerms and cumulative values");

140 CHAPTER 5. THE DICTIONARY OF EXPERIMENTS

critical2(pBinomial, alpha);
//critical2(n,p, alpha);

}

//Binomial distribution
public static void binomialDistribution()
{

System.out.println("\n\nBINOMIAL DISTRIBUTION ");
//Example 44 pag 32.
int n= 6;
double p = 0.25;
int F = 35;
//binomialDist(n,p,F);
//Inverse problem: find critical values
double alpha = 0.02;
criticalValues(n,p,alpha);
separator();

}

//=== =
// THE TOP 12 TESTS
//=== =

//============Machinery of general use

//This is constant pi
private static final double pi = 3.14159265358979323846;

//Symbolic initialization that can be modified
//Significasnce level
private static double alpha = 0.05;
//Degrees of freedom of the t distribution
private static double dfT = 9;
//Degrees of freedom of the chi2 distribution
private static double dfChi2 = 17;
//Degrees of freedom of the F distribution, numerator
private static double dfFNum = 4;
//Degrees of freedom of the F distribution, denominator
private static double dfFDen = 32;

//====== Methods of general use=========

5.1. THE SIMPLEST EXPERIMENT 141

//Returns numb!
private static long factorial (long numb)
{

if (numb <=1) return 1;
else

return numb * factorial (numb -1);
}

//Returns the double factorial
private static double doubleFact(double x)
{

if (x <=0) return 1;
else

return x * doubleFact(x -2);
}

//Returns the Gamma function
private static double Gamma(double x)
{

int xRounded = (int) x;
//System.out.println(x + " " + xRounded);
if (xRounded == x)

return factorial (xRounded-1);
else
{
return Math.sqrt(pi) * doubleFact(2 * xRounded -1) /

Math.pow(2,xRounded);
}

}

//======Inner top class that calculates==========
//===========critical and p-values ==============

//The methods that eventually can be useful
//to all distributions come here such as they are.
//The methods that are privative of each distribution
//are defined here as abstract
//and implemented in specific classes below.
abstract class ValueAbstract
{
double sumzero;
double Error;
double jCritic;

142 CHAPTER 5. THE DICTIONARY OF EXPERIMENTS

double k;

//The density function is of abstract type.
//It is not implemented,
//so we can implement other functions too and
//process them with this very same machinery.
abstract double f(double t);

//========= p-values==========

//Returns the integral under the function f
//in within 0 and z. Precision=1/N.
//Simpson’s rule adapted for reuse.
double HalfBodySimpson(double z, long N)
{

double h = z/(2 * N);
long m = N;
double sum = f(0);
for(int j= 1; j<=m; j++)
sum = sum + 4* f((2 * j-1) * h);
for(int j= 1; j<m; j++)
sum = sum + 2* f((2 * j) * h);
sum = sum + f((2 * m) * h);
sum = (h/3) * sum;
return sum;

}

//The area in within zero and z of chosen
//distribution is calculated
//for various degrees of precision.
double area(double z)
{

z = (Math.sqrt(1+4 * z* z)-1)/(2 * z);
int N;
double answer;
int i = 3;
N = (int) Math.pow(10, i);
answer = HalfBodySimpson(z,N);
return answer;

}

5.1. THE SIMPLEST EXPERIMENT 143

//Returns Psi(e) = p(x < e)
//the cumulative distribution function of e.
//This is abstract because it depends
//on the distribution, it must be
//implemented in the corresponding classes.
double psi(double e)
{

return 0.5 + area(e);
}

//Returns the p-value(e) = p(x > e)
//Local implementation of the p-value of e
double pValue(double e)
{

return 1- psi(e);
}

//Local manager
void pExecutor(double testValue)
{

System.out.println("\nTest value = " + testValue);
System.out.print("Simpson’s rule."+

"\nArea = p(0 < x < " + testValue + ") = ");
double area = area(testValue);
System.out.println(area);
//psi(e) = p(x < e)
double psi = psi(testValue);
System.out.println("psi(" + testValue + ") " +

"= p(x < " + testValue + ") = " + psi);
double pValue = pValue(testValue);
System.out.println("p-value(" +

testValue + ") = " +
"p(x > " + testValue + ") = " + pValue);

}

//========Critical values=====

//Reports the transformed upper u-critical for
//the given distribution.
//Significance level = alpha.
//Precision=1/N.
//Simpson’s rule adapted for reuse.
//The error of approximation is also calculated.
double upperU(double h, double target)
{

144 CHAPTER 5. THE DICTIONARY OF EXPERIMENTS

double r = h/6;
jCritic = 0;
double sum = sumzero;
for(int j= 0; sum < target; j++)

{
sum = sum +

r * (f(j * h) + 4 * f((j+0.5) * h) + f((j+1) * h));
jCritic = j+1;

}
jCritic = jCritic-1;
double greatSum = sum -

r * (f(jCritic * h) + 4 * f((jCritic+0.5) * h)
+ f((jCritic+1) * h));

Error = target-greatSum;
double uAprox = (jCritic) * h;
return uAprox;

}

//Returns the transformed value z = u/(1-u * u)
double z(double u)
{

double z = u/(1-u * u);
return z;

}

//The wide of subintervals is defined
double h()
{

double u = 1;
int i=3;
long N = (int) Math.pow(10, i);
double h = u/N;
return h;

}

//Reports the upper z-critical for
//Significance level = alpha.
double vCrit(double target)
{

double h = h();
//System.out.println("h = " + h);
double uCritic = upperU(h, target);
double zCritic = z(uCritic);
return zCritic;

5.1. THE SIMPLEST EXPERIMENT 145

}

// ***** Analytical hunting *******

//Returns the density function of the distribution
abstract double ff(double z);

//Returns F(a,b) = h(f(a) + 4 * f((a+b)/2) + f(b))-Error;
double F(double a, double b)
{

double h = (b-a)/6;
double Fb = h * (ff(a) + 4 * ff((a+b)/2)

+ ff(b))-Error;
return Fb;

}

//Returns the ratio F(zCritic,gi)/ ff(gi)
double ratio(double zCritic, double gi)
{

double ratio = F(zCritic,gi)/ ff(gi) ;
return ratio;

}

//Critical value for the upper tail.
//A professional approximation is found by
//analytical hunting
double hunting(double zCritic)
{

double h = h();
double ur = (jCritic+1) * h;
//Right border of the critical interval
double rBorder = z(ur);
double gSubi = rBorder;
double gSubiPlus= 0;
int iterations = 0;
int maxIterations = 30;
boolean more = true;
while (more)

{
gSubiPlus = gSubi - ratio(zCritic, gSubi);
iterations = iterations +1;
if (iterations >= maxIterations) more = false;

146 CHAPTER 5. THE DICTIONARY OF EXPERIMENTS

if (gSubiPlus == gSubi) more = false;
gSubi = gSubiPlus;

}
return gSubiPlus;

}

//Critical value for significance level alpha, one tail
double critical(double alpha)
{

double target = 1-alpha;
double vCritic = vCrit(target);
vCritic = hunting(vCritic);
return vCritic;

}

//Local manager
void critManager(double alpha)
{
System.out.println("\nAlpha = Significance level = "
+ alpha + ".");

System.out.println("Critical values for ONE TAIL = +/-"
+ critical(alpha));

double alphaHalf = alpha/2;
System.out.println("Critical values for TWO TAILS = +/-"

+ critical(alphaHalf));
}

}//end of class ValueAbstract

//======Particular classes========

//The z class.
//Definition of the z density function
//and exclusive to it methods.
//It is an specification of the ValueAbstract class.
class VzClass extends ValueAbstract
{

//Constructor: this is the first thing to do
VzClass()
{

sumzero = 0.5; //half bell

5.1. THE SIMPLEST EXPERIMENT 147

System.out.println("\n===== z distribution");
}

//Function f is implemented here.
//Returns the transformed density function of the
//standardized normal distribution.
double f(double t)
{

double z = t/(1-t * t);
double f = 1 /Math.pow(2 * pi, 0.5) * Math.exp(-z * z/2) *

(1+ t * t)/((1-t * t) * (1-t * t));
return f;

}

//Returns the density function of the Z distribution
double ff(double z)
{

double f = Math.exp(-z * z/2)/Math.pow(2 * pi, 0.5);
return f;

}

}//end of class VzClass

//The t class
//Definition of the t density function
//and exclusive to it methods.
//It is an specification of the ValueAbstract class.
class VtClass extends ValueAbstract
{

//Constructor: this is the first thing to do
VtClass()
{

sumzero = 0.5; //half bell
System.out.println("\n===== t distribution");
System.out.println("t degrees of freedom = " + dfT);

}

//Function f is implemented here.
//Returns the transformed density function of the
//t distribution with dfT d.f.

148 CHAPTER 5. THE DICTIONARY OF EXPERIMENTS

double f(double t)
{

double nu = dfT;
double z = t/(1-t * t);
double f = (Gamma((nu+1)/2)

/ (Math.sqrt(pi * nu) * Gamma(nu/2)))

* Math.pow(1+z * z/nu, -(nu+1)/2)

* (1+ t * t)/((1-t * t) * (1-t * t));
return f;

}

//Returns the density function of the t-distribution
double ff(double z)
{

double nu = dfT;
double f = (Gamma((nu+1)/2)

/ (Math.sqrt(pi * nu) * Gamma(nu/2)))

* Math.pow(1+z * z/nu, -(nu+1)/2) ;
return f;

}

}//end of class VtClass

//The chi2 class
//Definition of the Chi2 density function
//and exclusive to it methods.
//It is an specification of the ValueAbstract class.
class VChi2Class extends ValueAbstract
{

//Constructor: this is the first thing to do
VChi2Class()
{

sumzero = 0; //no negative values
System.out.println("\n===== Chi2 distribution");
System.out.println("Chi2 degrees of freedom = " + dfChi2);

}

//Returns Psi(e) = p(x < e)
//the cumulative distribution function of e
double psi(double e)
{

return area(e);

5.1. THE SIMPLEST EXPERIMENT 149

}

//Function f is implemented here.
//Returns the transformed density function of the
//chi2 distribution with nu d.f.
double f(double t)
{

double nu = dfChi2;
double z = t/(1-t * t);
double f = (1 /

(Math.pow(2, nu/2) * Gamma(nu/2)))

* Math.exp(-z/2) * Math.pow(z, (nu-2)/2)

* (1+ t * t)/((1-t * t) * (1-t * t));
return f;

}

//Returns the density function of the chi2-distribution
double ff(double z)
{

double nu = dfChi2;
double f = (1/(Math.pow(2, nu/2) * Gamma(nu/2)))

* Math.exp(-z/2) * Math.pow(z, (nu-2)/2);
return f;

}

//Local manager
void manager(double alpha)
{

System.out.println("Critical values for ONE TAIL "
+ "\nof the chi-square- "

+ "distribution with df = "
+ dfChi2
+ "\nAlpha = Significance level = "
+ alpha + ".");

System.out.println("Lower critical value = "
+ critical(1-alpha));

System.out.println("Upper critical value = "
+ critical(alpha));

System.out.println("\nCritical values for TWO TAILS "
+ "\nof the chi-square "

+ "distribution with df= "
+ dfChi2

150 CHAPTER 5. THE DICTIONARY OF EXPERIMENTS

+ "\nAlpha = Significance level = "
+ alpha + ".");

double alphaHalf = alpha/2;
double Chi2Menos = critical(1-alphaHalf) ;
System.out.println("Lower critical value = "

+ Chi2Menos);
double Chi2Mas = critical(alphaHalf) ;
System.out.println("Upper critical value = "

+ Chi2Mas);
}
}//end of class pVChi2Class

//The F class
//Definition of the Chi2 density function
//and exclusive to it methods.
//It is an specification of the ValueAbstract class.
class VFClass extends ValueAbstract
{

//Constructor: this is the first thing to do
VFClass()
{

sumzero = 0; //no negative values
double nu1 = dfFNum;
double nu2 = dfFDen;
double a = Math.pow(nu1, nu1/2);
double b = Math.pow(nu2, nu2/2);
double c = beta(nu1/2,nu2/2);
k = a * b / c;
System.out.println("\n===== F distribution");
System.out.println("F degrees of freedom: "

+ "Num = " + dfFNum
+ ", Den = " + dfFDen);

}

//Returns Psi(e) = p(x < e)
//the cumulative distribution function of e
double psi(double e)
{

return area(e);
}

5.1. THE SIMPLEST EXPERIMENT 151

//Returns the transformed density function of the
//F distribution with dfFNum and dfFDen d.f.
double f(double t)
{

double nu1 = dfFNum;
double nu2 = dfFDen;
double z = t/(1-t * t);
double f = k * Math.pow(z, nu1/2-1)

* Math.pow(nu2+nu1 * z, -(nu1+nu2)/2)

* ((1+ t * t)/((1-t * t) * (1-t * t))) ;
//System.out.println(f);
return f;

}

//Returns a helping function with d.f. =
//a(num) and b(den)
double g(double x, double a, double b)
{

double g = Math.pow(x, a -1) *
(Math.pow(1-x, b -1));

return g;
}

//Returns the integral under the function f
//in within 0 and u. Precision=1/N.
//Simpson’s rule adapted for reuse.
//a and b are degrees of freedom
double HalfBodySimpsong(double u,
double a, double b, long N)
{

double h = u/(2 * N);
long m = N;
double sum = g(0,a,b);
for(int j= 1; j<=m; j++)
sum = sum + 4* g((2 * j-1) * h,a,b);
for(int j= 1; j<m; j++)
sum = sum + 2* g((2 * j) * h,a,b);
sum = sum + g((2 * m) * h,a,b);
sum = (h/3) * sum;
return sum;

}

//Returns the beta function in integral form

152 CHAPTER 5. THE DICTIONARY OF EXPERIMENTS

//with a and b d.f.
double beta(double a, double b)
{

double answer;
int i = 4;
int N = (int) Math.pow(10, i);
double u=1;
answer = HalfBodySimpsong(u,a,b,N);
return answer;

}

//Reports the transformed upper u-critical for
//the given distribution.
//Significance level = alpha.
//Precision=1/N.
//Simpson’s rule adapted for reuse.
//The error of approximation is also calculated.
double upperU(double h, double target)
{

double r = h/6;
double sum = 0;
jCritic = 0;
for(int j= 0; sum < target; j++)

{
sum = sum +

r * (f(j * h) + 4 * f((j+0.5) * h) + f((j+1) * h));
jCritic = j+1;

}
jCritic = jCritic-1;
double greatSum = sum -

r * (f(jCritic * h) + 4 * f((jCritic+0.5) * h)
+ f((jCritic+1) * h));

Error = target-greatSum;
double uAprox = (jCritic) * h;
return uAprox;

}

//Returns the density function of the t-distribution
double ff(double z)
{

double nu1 = dfFNum;
double nu2 = dfFDen;
double f = k * Math.pow(z, nu1/2-1)

* Math.pow(nu2+nu1 * z, -(nu1+nu2)/2) ;

5.1. THE SIMPLEST EXPERIMENT 153

return f;
}

//Local manager
void manager(double alpha)
{

System.out.println("\nF distribution");
System.out.println("Critical values for ONE TAIL "

+ "\nof the F- "
+ "distribution with df: "
+ dfFNum + " and " + dfFDen+ ", "
+ "\nAlpha = Significance level = "
+ alpha + ".");

System.out.println("Lower critical value = "
+ critical(1-alpha));
System.out.println("Upper critical value = "
+ critical(alpha));

System.out.println("\nCritical values for TWO TAILS "
+ "\nof the f "

+ "distribution."
+ "\nAlpha = Significance level = "
+ alpha + ".");
double alphaHalf = alpha/2;

System.out.println("Lower critical value = "
+ critical(1-alphaHalf));
System.out.println("Upper critical value = "
+ critical(alphaHalf));
}
}//end of class pVFClass

//=======================================
//======== THE 12 MOST USUAL TESTS ======
//=======================================

//======= 1: z-test for one mean ========

//Runs a z-test for the mean
//knowing the mean of a random sample
//and the populational variance.
//Confidence interval for the mean is also calculated.

154 CHAPTER 5. THE DICTIONARY OF EXPERIMENTS

static void printData1(double xBar, double mu,
double sigma, double n, double alpha)
{
System.out.println("\nz Test to study the null" +

"\nhypothesis about a mean given the mean " +
"\nof a random sample and the standard deviation" +
"\nof the population.\n");

System.out.println("Observed mean = xBar = " + xBar);
System.out.println("Ho: expected mean = mu = " + mu);
System.out.println("sigma = " + sigma);
System.out.println("n = " + n);
System.out.println("alpha = " + alpha);
}

/ * Measures the discrepancy between observed and expected

* in z Test to study the null hypothesis about a mean

* given the mean of a sample and the standard deviation

* of the population. * /
static double zExpOneMean(double xBar, double mu,
double sigma, double n)
{

System.out.println(
"zExp = (xBar- mu)/(sigma/Math.sqrt(n))");

double zExp = (xBar- mu)/(sigma/Math.sqrt(n));
return zExp;

}

/ * Confidence interval for the mean
given the populational variance * /
static void confIntMeanZ(double xBar, double mu,
double sigma, double n, double alpha)
{
System.out.println("\nConfidence interval of the mean" +
" \ngiven the populational deviation sigma");
double alphaHalf = alpha/2;
double zc2 = p.critical(alphaHalf);
double r = zc2 * sigma / Math.sqrt(n);
System.out.println("r = zc2 * sigma / Math.sqrt(n)");
System.out.printf("r = %10.4f \n", r);
double limInf = xBar - r;
double limSup = xBar + r;

5.1. THE SIMPLEST EXPERIMENT 155

System.out.printf("limInf = xBar - r " +
"= %10.4f \n" , limInf);

System.out.printf("limSup = xBar + r " +
"= %10.4f \n", limSup);

}

static //Standard error of the mean
double sError(double sigma, double n)
{
System.out.println("\nStandard error = " +
"sigma/Math.sqrt(n)");
return sigma/Math.sqrt(n);
}

static //Needed n = size of the sample
//given tolerance E in the evaluation of the mean.
int nNeeded(double sigma, double E)
{
System.out.println("\nTolerance error E = "+ E);
//Critical z with two tails
double alphaHalf = alpha/2;
double zc2 = p.critical(alphaHalf);
System.out.println("m= " + "zc2 * sigma / E ");
//Needed n
double m = zc2 * sigma / E;
System.out.println("Needed n = m * m");
//Upwards approximation
return (int) Math.ceil(m * m);
}

//Runs a z test for one mean
public static void zTestOneMeanWork(double xBar, double m u,
double sigma, double n, double alpha)
{

//Top class is instructed to take
//the form of the particular class
p = z;
//z-test for one mean
printData1(xBar,mu,sigma,n,alpha);
//Critical values
double zCriticOneTail = p.critical(alpha);
double alphaHalf = alpha/2;

156 CHAPTER 5. THE DICTIONARY OF EXPERIMENTS

double zCriticTwoTails = p.critical(alphaHalf);
//z-test
System.out.printf("Discrepancy between observed and ");
System.out.printf("expected: \n");
double zExp = zExpOneMean(xBar,mu,sigma,n);
System.out.printf("zExp = %10.4f \n" , zExp);
double pValue = p.pValue(zExp);
System.out.println("p-value(" +

zExp + ") = " +
"p(x > " + zExp + ") = " + pValue);

System.out.printf("zCritic for TWO TAILS " +
"= zc2 = +/-%10.4f \n", zCriticTwoTails);
System.out.printf("zCritic for ONE TAIL " +
"= zc1 = +/-%10.4f \n", zCriticOneTail);
//Standard error
double error = sError(sigma,n);
System.out.printf("Standard error = %10.4f \n", error);
//Confidence interval
confIntMeanZ(xBar,mu,sigma,n,alpha);
//Admitted tolerance for mu
double E = 5;
//Size of sample to attain tolerance E
int nNeeded = nNeeded(sigma, E);
System.out.printf("Needed n = %10d \n", nNeeded);
separator();
}

//Data input for a z test for one mean
public static void zTestOneMean()
{
//Example 184, pg 169
double xBar = 40;
double mu = 20;
double sigma = 16;
double n = 36;
alpha = 0.05;
zTestOneMeanWork(xBar,mu,sigma,n,alpha);
}

}//End of main class

107. Exercise. Run the program and play with the code.

5.2. POPULAR EXPERIMENTS 157

5.2 Popular experiments

We have included in our toolBox the statistics for a first experiment. To include
others is just more of the same. So, let us list the most usual formats for
experiments.

108. The top 12

The next is a list of the 12 most usual formats for experiments. We follow
our text associated to this series on Elementary Statistics Vol I version 7.

1. Study of one mean knowing σ. Done.

2. Comparison of the means of X and Y knowing σX , σy,

Two tails test: Ho : µx − µY = 20 and Ha : µx − µY 6= 20

One tail test: Ho : µx − µY = 20 and Ha : µx − µY < 20

Stadigraph to measure the discrepancy between observed differ-
ence X̄m − Ȳn and expected one µX − µY according to Ho.

z = (X̄m−Ȳn)−(µX−µY)√
σX

2

m +
σY

2

n

Confidence interval for µX − µY :

(X̄m − Ȳn)− z(α,2)

√
σX

2

m + σY
2

n < µX − µY <

(X̄m − Ȳn) + z(α,2)

√
σX

2

m + σY
2

n

3. Estimation of a mean knowing the deviation of a sample.

σ̂2
X = s =

√
Σ(xi−X̄)2

n−1 =
√

n(Σx2)−(Σx)2

n(n−1)

Two tails test: Ho : µx = 20 and Ha : µx 6= 20

One tail test: Ho : µx = 20 and Ha : µx < 20

Stadigraph to measure the discrepancy between observed X̄n and
the expected µX according Ho :

t = X̄n−µX
σ̂X
√

n

4. Study of one proportion.

• La Ho : p = po

Stadigraph to measure the discrepancy between observed relative fre-
quency f and expected proportion po according to Ho:

z = f−po√
po(1−po)

n

158 CHAPTER 5. THE DICTIONARY OF EXPERIMENTS

• Confidence interval of 1− α for p. If f = k
n , the interval is

f − (z(α,2))
√

f(1−f)
n < p < f + (z(α,2))

√
f(1−f)

n

• Needed number of registered events to asses po when tolerance of E
is admitted:

n = (z(α,2))
2 1
4E2 .

5. Comparison of two proportions that come from independent
samples:

Two tails test: Ho : p− r = −0.20 and Ha : p− r 6= −0.2020

One tail test: Ho : p− r = −0.20 and Ha : p− r < −0.20

Stadigraph to measure the discrepancy between observed differ-
ence f − g and expected one p− r according to Ho:

z = (f−g)−(p−r)
sb

where the binomial deviation sb can take one among various forms:

Case 1: If p and r are given together with the sizes of samples m, n

sb =
√

p(1−p)
m + r(1−r)

n

Case 2: When the expected difference is zero, p− r = 0, we can join all
data into a single sample to estimate p:

p̂ = X+Y
m+n

One can also use the alternate formula:

p̂ = fm+gn
m+n

sb =
√
p̂(1− p̂)(1

m + 1
n)

Case 3: When p and r are not given but the expected difference p − r
is known together with relative frequencies f , g, and the sizes of samples
m, n:

sb =
√

f(1−f)
m + g(1−g)

n

Confidence interval for the difference of proportions p− r:

5.2. POPULAR EXPERIMENTS 159

f−g−(z(α,2))
√

f(1−f)
m + g(1−g)

n < p−r < f−g+(z(α,2))
√

f(1−f)
m + g(1−g)

n

6. Study of one variance

Two tails test: Ho : σ2 = 200 and Ha : σ2 6= 200

One tail test: Ho : σ2 = 200 and Ha : σ2 < 200

Stadigraph to measure the discrepancy between observed σ̂2 and
expected σ2 according to Ho:

χ2 = (n−1)σ̂2

σ2 con n− 1 g.l.

Confidence interval for the variance σ2

(n−1)σ̂2

χ2
+

< σ2 < (n−1)σ̂2

χ2
−

7. Comparison of two variances.

We use a ratio between large and small variances.

Ho :
σ2
L

σ2
S
= R

Rexp =
σ̂2
L

σ̂2
S

with m− 1 d.f in the numerator and n− 1 in the denominator.

Stadigraph to measure the discrepancy between observed Rexp and ex-
pected R:

F =
Rexp

R =
σ̂2
G

Rσ̂2
P

with m− 1 d.f in the numerator and n− 1 in the denominator.

Confidence interval for the ratio between two variances
σ2
G

σ2
P
:

σ̂2
G

σ̂2
PF+

<
σ2
G

σ2
P
<

σ̂2
G

σ̂2
P F−

where F+ = F+,µ,ν with df of numerator = µ and df of denominator = ν.

F− = F−,µ,ν = 1
F+,ν,µ

8. Comparison of two means knowing after the study of variances
that populational variances are equal.

Stadigraph to measure the discrepancy between observed X̄m−
Ȳn, and expected µX − µY according to Ho:

t = (X̄m−Ȳn)−(µX−µY)

σ̂J

√
1
m+ 1

n

160 CHAPTER 5. THE DICTIONARY OF EXPERIMENTS

Join deviation results from uniting the two samples into a single one to
estimate the only one deviation σ̂J :

σ̂J =
√

σ̂X
2(m−1)+σ̂Y

2(n−1)
n+m−2

Confidence interval for µX − µY :

(X̄m− Ȳn)− t(α,2)σ̂J

√
1
m + 1

n < µX −µY < (X̄m− Ȳn)+ t(α,2)σ̂J

√
1
m + 1

n

df= n+m-2.

9. Comparison of two means knowing by the previous study of vari-
ances that populational variances are different.

Observed X̄m − Ȳn

Expected Ho : µX − µY = 30

Stadigraph to measure the discrepancy between observed, X̄m −
Ȳn, and expected µX − µY according to Ho:

t = (X̄m−Ȳn)−(µX−µY)√
σ̂X

2

m +
σ̂Y

2

n

Confidence interval for µX − µY

(X̄m−Ȳn)−t(α,2)

√
σ̂X

2

m + σ̂Y
2

n < µX−µY < (X̄m−Ȳn)+t(α,2)

√
σ̂X

2

m + σ̂Y
2

n

Degrees of freedom:

g.l =
(
V arX
nX

+
V arY
nY

)2

(
V arX
nX

)2

nX+1 +
(
V arY
nY

)2

nY +1

− 2

10. Comparison of means for paired data:

Ho : µX − µY = 8

Data come in n pairs (xi, yi). Each pair gives raise to a signed difference
Di = xi − yi. The Di have a mean D̄ and a deviation sD:

D̄ = xi−yi

n .

Stadigraph to measure the discrepancy between observed D̄ and
expected µX − µY according to Ho, :

t = D̄−(µX−µY)
sD
√

n

5.3. CONCLUSION 161

The degrees of freedom of the t are n− 1.

Confidence interval for difference of means for paired data:

D̄ − t(α,2)
sD√
n
< µX − µY < D̄ + t(α,2)

sD√
n

11. Independence of attributes and contingency tables with data
Observedij in row i and column j.

Expected frequency under independence of attributes:

Expectedij =
(RowSumi)×(ColumnSumj)

GrandSum

Discrepancy =
∑ (Observedij−Expectedij)

2

Expectedij
= (

∑ (Observedij)
2

Expectedij
)− n

The discrepancy must be compared with the critical χ2 with (r−1)(c−1)
d.f.

12. Multiple comparison of proportions:

Accommodate data as in a contingency table and apply the very same
algorithm.

Ho : proportions are homogeneous.

Ha : there is at least one pair of different proportions.

109. Exercise. Encode the top 12 experiments to graduate your toolBox7 to
StatTrek version 1.

5.3 Conclusion

We have merged all our particular tools into a great toolbox ready to be used.
While we have enjoyed our work, it was full of challenges. In spite of the fact
that our problem was of low to middle complexity, we have plainly verified that
there is no software without a fierce battle with bugs.

162 CHAPTER 5. THE DICTIONARY OF EXPERIMENTS

Chapter 6

Conclusions

We have registered some few moments of the development of a project that
was not precisely a homework for the next day. Our experience allows us to
emphasize:

1. Our study has a purpose: it is specifically directed to show that the insight
that the genome is software and evolution is a software developer
is both necessary and sufficient to deal with all fundamental
questions about biological evolution. Accepting that the software of
the genome is as natural as the rest of the universe, then the study of
evolution is a part of the study of software development in general. That
is why our work in developing the software for StatTrek has been taken
as a lab in evolution that we eagerly apply to biology. Some conclusions
follow.

2. There are too many styles for programming most possibly one for each
developer. But given that designing software is very difficult, it is our
duty to learn a style that possibly would alleviate that difficult task. Our
election has been to single out a gossipless, transparent, functional, OOP
style of design. A gossipless style is one according to which local prob-
lems are solved locally using local variables, so design is not overburden
with complexity. A transparent style is one in which the code, its out-
put, the problem and its solution are all made on the same image. The
importance of transparency stems form the fact that developing software
is just going over fixing bugs whose correction generates more bugs. So,
transparency easies the correction of bugs. A functional style is one that
encapsulates a piece of code in a method if and only if it has a function
with a clearly defined output in response to each input. The OOP (object
oriented programming) style is one that encapsulates in a class ready for
reuse a set of variables and methods if they are functionally associated as
a unity.

3. A successful style produces evolvable software, which enables one to pro-

163

164 CHAPTER 6. CONCLUSIONS

duce great buildings at fast pace by resorting to more elementary building
blocks. Nevertheless, evolutionary inertia (the blind use of building
blocks at hand) is not as efficient as considering that big problems need
big strategies and not a sum of tiny ones.

4. We have witnessed that it is very easy to produce not evolvable software.
Rather, one produces code that solves the problem of the day but if one
desires to use this code to solve a problem of the following week, one sees
that the previous code needs to be modified so much that it might be easier
to design the needed code ab initio. This happens because one cannot
grasp the role of global variables in a gossip style, or when one cannot
see the function fulfilled by a piece of code making it not transparent, or
when a piece of code has functions not listed in the output so that it is
not functional, or when encapsulation is not faithful, dividing an item
that function as a unity and merging things that function better if they
are separated.

5. While we feel that evolvable software is akin to a gossipless, transparent,
functional, OOP style, we know that this style is not a panacea. Say, we
as yet have not solved the problem of granulation, which appears when
one divides a task in too many small problems producing many methods
that implement extremely simple functions. The arising trouble is that
combining many elements is more difficult than combining some few ones.
That is why one looks for a compromise appropriate to the given task:
building blocks must be elementary like tiles but not too much as grains
of sand.

6. We perceive that complexity breaks evolution: ordinary complexity is
plenty of terrible problems that make fun of every style, say, if one care-
fully devises each method following the most purist style, at the moment
of assembling a complex program, the ensemble looks as an entangled
conglomerate that, because of mutual calls, one cannot understand how
it functions. The arising situation is well known in the trade because
one easily ends up with a code that resembles a ’big ball of mud’, which
’is haphazardly structured, sprawling, sloppy, duct-tape and bailing wire,
spaghetti code jungle’ (Foote and Yoder, 1995). Therefore, one cannot
use extant code to facilitate solving more complex problems.

7. We propose that a style results from a strategy to solve problems so it is
a direct result of having a rather limited mind. Therefore, we predict that
evolution must have no style, i.e., software devised by evolution must be
dominated by disorder but locally it must follow a given style that never
will get repeated anyhow. We consider this prediction mandatory and we
conclude that it is plainly falsified: genetic engineering is possible just
because the genome follows all around an extremely transparent style.

8. Complexity implies in real terms that one cannot guarantee that produced
code might be bugfree. Quite to the contrary, reuse usually allows the

165

unveiling of previously unseen bugs. That is why the record consigned in
the present volume does not depicts a temporal chart of development but
only a pedagogical one. In other words, to say that the present material
is an example of evolution is unduly because the past has received many
improvements and corrections dictated by the future.

9. We have merged all our particular tools into a great toolbox ready to be
used but at own risk because of hidden bugs. While we have enjoyed our
work, it was full of challenges. Thus and in spite of the fact that our
problem was of low to middle complexity, we have plainly verified that
there is no software without a fierce battle with bugs. Nevertheless, we
have erased any trace of correction of bugs, just as the genome of all living
and all extinct species seems to be.

10. We have illustrated two of our general claims: evolution might be a hand-
icap for further construction of complexity and that evolution and good
style do not go hand in hand. Therefore evolution of complex features
must left a clear track towards perfection that must be apparent in the
fossil record. Nothing like that is found in nature so this is a mandatory
prediction of the evolutionary theory that is falsified.

11. Summing up, we content three main points. First: evolution is a great
idea whose implementation by Java has included such wonderful tools as
abstract classes and overriding. Second: that there is no one scientific
reason under the sun to consider that life on Earth might be explained
by the evolutionary theory of present scientific international literature.
Third: the falsifications of that theory can be hardened and multiplied.
So, everyone in our community has a hard work for a long time: to show
beyond all criticisms that the evolutionary theory is scientifically witless
else to make a point of it. Our choice is the first one.

166 CHAPTER 6. CONCLUSIONS

Answers to exercises

Problems of Chapter 1

10, pag. 6. Complete instructions are finished with ”;”. Com-
mentaries are initialized with // and can be ended with any sign.
A line that declares the name of the class or of a method does not
have ”;”, instead it has a key pair: {}.

13, pag. 7.

//Program F13 biography
//Same as Program A11
//This is my first exercise,
//It prints my name and birthday.
//The name of this class or program is biography

public class biography
{

public static void main(String[] args)
{

System.out.println("L.J., the Intelligent.");
System.out.println("Birthday: March 5th.");

}
}

Problems of Chapter 2

23 pag. 15. To make tables, use the method printf that means print with
format (inherited from C):

167

168 ANSWERS TO EXERCISES

int i = 5;
double a = i * i;
System.out.printf("%7d %11.5f %n",

i, a);

This piece of code declares two variables, the first int and the second double.
Next, the printing instruction reads: print an int or discrete variable using 7
spaces and next a variable of type double or float (less precision that double)
using 11 spaces, 5 of which are for the decimal part. The instruction ends by
specifying which variables must be printed. Notice that with println we use
the symbol + to concatenate strings while with printf we use commas to list
variables. Also, the symbol for change of car is "\n ” with println while it is
“%n” with printf. If we need to print a string, one uses the modifier “%s”.

24, pag. 15. Program to calculate mean and variance of a list of data using
an alternate definition.

//Program F24 MeanVarList2
//This program computes the mean and
//variance of a list of data.
//Alternate method is used.

public class meanVarList2
{

//The variance of a list of data
private static void meanVarVector(double DataVect[])

{
int n = DataVect.length;
double sumx = 0;
double sumx2 = 0;
System.out.printf("%n x xˆ2");
for(int i = 0; i < n; i++)
{

sumx = sumx + DataVect[i];
sumx2 = sumx2 + DataVect[i] * DataVect[i];
System.out.printf("%n %10.3f %10.3f ",
DataVect[i], DataVect[i] * DataVect[i]);

}
System.out.printf("%n Sum %6.3f %10.3f ",

sumx, sumx2);
System.out.print("\n \n");
System.out.println("n = number of data = " + n);
System.out.println("sumx = " + sumx);
double mean = sumx / n;
System.out.println("Mean = sumx / n");

169

System.out.println("Mean = " + mean);
System.out.println("sumx2 = " + sumx2);
System.out.println("variance = " +

"(n * sumx2 - sumx * sumx)/ (n * (n-1))");
double var = (n * sumx2 - sumx * sumx)/ (n * (n-1));
System.out.println("Variance = "+ var);
double deviation = Math.pow(var, 0.5);
System.out.println("Deviation = "+ deviation);
double coeffVar = deviation/mean;
System.out.println("Coefficient of variation = "

+ coeffVar);
System.out.println("\nCoeff around 0.01, " +

"homogeneous population.");
System.out.println("Coeff around 0.1, " +

" +/- homogeneous population.");
System.out.println("Coeff around 0.5, " +

" heterogenous population.");
}

public static void main(String[] args)
{

System.out.println("MEAN AND VAR OF A LIST OF DATA");
//Example 19 page 9.
double DataVect[] = {5, 3, 4.5, 2};
meanVarVector(DataVect);

}

}

27, pag. 18. The program has two versions of the method sumVector which
sums the entries of a given vector, one for the original vector and the other for the
vector with its squares. One can see that apart from minor but transcendental
changes the code is repeated, so it amounts to a duplication. At the end this is a
form of reuse that functions in spite of being primitive. Now, is being primitive a
defect or a virtue? It depends on the context. In computing science of high level
languages, such as Java, it is a serious pitfall but for languages of low level, such
as assembler, being primitive is the only possible way of life. By the way, the
genome has a very primitive style of design, so much that it has been argued that
its complexity arouse as the natural fruit of evolution through duplications. On
the other hand, the designers of programming languages noticed that reuse, or
evolution, can be greatly facilitated if one enables each method to be a function,
i.e., a machine that processes in a unique way a given input into a unique output
that must be clearly separated from the input.

170 ANSWERS TO EXERCISES

30, pag. 19. Mean and variance according to the functional style:

//Program F30 meanVarList4
/ * This program computes the mean and

variance of a list of data.
Functional style of design:
1) Code is compartmentalized in methods.
2) Every method is a function with

a clearly specified input and
with an output that is ready for reuse
in other methods.

3) No global variables.
4) Methods are ready for reuse in other classes.

* /

public class meanVarList4
{

/ *
* No global variables

* /

//Data are summed.
//The input is a Vector, the output is of type double.
private static double sumVector(double[] V)
{

double sum = 0;
for(int i = 0; i < V.length; i++)

sum = sum + V[i];
return sum;

}

//The mean of a list of data
private static double meanVector(double[] V)

{
int n = V.length;
double mean = sumVector(V) / n;
return mean;

}

//Every entry of a Vector is squared.

171

//The input is a Vector, the output is also a Vector.
private static double[] squareVector(double[] V)
{
//Zeroed initialization of a Vector
double[] V2 = new double[V.length];
//The square of each entry of F is calculated
//and kept in list.F
for(int i = 0; i < V.length; i++)
V2[i] = V[i] * V[i];
return V2;
}

//Documentation is printed
private static void explanation()
{

System.out.println("\nCoeff around 0.01, " +
"homogeneous population." +
"\nCoeff around 0.1, " +
" +/- homogeneous population."+
"\nCoeff around 0.5, " +
" heterogenous population.");

}

//This is the core of the main class
//Here, commands are given to execute the overall task.
private static void meanVarVector(double[] V)
{

String a = "x";
String b = "x2 = xˆ2";
System.out.printf("%n %10s %11s", a, b);
int n = V.length;
double[] squareVect = new double[n];
squareVect = squareVector(V);
for(int i = 0; i < n; i++)

System.out.printf("%n %10.3f %10.3f ",
V[i], squareVect[i]);

double sumx = sumVector(V);
double mean = meanVector(V);
double sumx2 = sumVector(squareVect);
System.out.printf("%n Sum %6.3f %10.3f ",

sumx, sumx2);
System.out.print("\n \n");
System.out.println("n = number of data = " + n);

System.out.println("\nsumx = " + sumx);

172 ANSWERS TO EXERCISES

System.out.println("Mean = sumx / n");
System.out.println("Mean = " + mean);
System.out.println("sumx2 = " + sumx2);
System.out.println("variance = " +

"(n * sumx2 - sumx * sumx)/ (n * (n-1))");
double var = (n * sumx2 - sumx * sumx)/ (n * (n-1));
System.out.println("Variance = "+ var);
double deviation = Math.pow(var, 0.5);
System.out.println("Deviation = "+ deviation);
double coeffVar = deviation/mean;
System.out.println("Coefficient of variation " +

"= deviation/mean");
System.out.println("Coefficient of variation = "

+ coeffVar);
explanation();

}

//Input is read and directed to processing methods
public static void main(String[] args)
{

System.out.println("MEAN AND VAR OF A LIST OF DATA");
//Example 19 page 9.
double DataVect[] = {5, 3, 4.5, 2};
meanVarVector(DataVect);

}

}

37, pag. 27. A tale according to a gossipless, transparent, functional style
of design.

//Program F37 meanVarList7
/ * This program computes the mean and

variance of a list of data.
Gossipless, transparent, functional style of design:
1) Code is compartmentalized in methods.
2) Every method is a function with

a clearly specified input and
with an output that is ready for reuse
in other methods.

3) No global variables.
4) Methods are ready for reuse in other classes.
5) The code, its output, the problem and its solution

are all made on the same image.

173

6) A table is defined by an inner class
as a personalized object.

7) Domestic problems are solve at own house.

* /

public class meanVarList7
{

/ *
* No global variables

* /

//The outer application is instantiated
private static meanVarList7 p = new meanVarList7();

//======== Inner class definition=======

//This inner class defines a new type: Table.
//It converts array F (two dimensional) into
//a class or object, ready for reuse.
private class Table
{

//The class Table fundamentally has three elements:
//a matrix with two columns and its length,
//which is the number of rows and
//the titles of columns.
int length;
String[] Titles = { "x", "x2 = xˆ2"};
double M[][] = new double[2000][2];

//The input of Table is defined here
//by means of an initialization procedure
//that is called constructor.
//The natural input is the raw data,
//which is consigned in a one dimensional array.
Table(double[] V)
{

length = V.length;
//The matrix M of Table is initialized
//Raw data go in the first column.
//Squares in the second.
for(int i = 0; i < length; i++)
{

M[i][0] = V[i];
M[i][1] = V[i] * V[i];

174 ANSWERS TO EXERCISES

}
}

//Data of column k are summed.
//The input is a table, the output is of type double.
private double sum(Table T, int k)
{

double sum = 0;
for(int i = 0; i < T.length; i++)

sum = sum + T.M[i][k];
return sum;

}

private void printTable(Table T)
{

System.out.printf("%n %10s %11s", T.Titles [0], T.Titles [1]);
for (int i = 0; i < T.length; i++)

System.out.printf("%n %10.3f %10.3f ",
T.M[i][0], T.M[i][1]);

System.out.println();
}

}//end of inner class

//=== Methods of the outer class meanVarList7 ===

//Documentation is printed
private static void explanation()
{

System.out.println("\nCoeff around 0.01, " +
"homogeneous population." +
"\nCoeff around 0.1, " +
" +/- homogeneous population."+
"\nCoeff around 0.5, " +
" heterogenous population.");

}

//This is the core of the main class
//Here, commands are given to execute the overall task.
private static void meanVarVector(double[] V)
{

//A table is declared
Table T = p.new Table(V);
T.printTable(T);

175

double sumx = T.sum(T,0);
int n = T.length;
double mean = sumx/ n;
double sumx2 = T.sum(T,1);
System.out.printf("%n Sum %6.3f %10.3f ",

sumx, sumx2);
System.out.print("\n \n");
System.out.println("n = number of data = " + n);

System.out.println("\nsumx = " + sumx);
System.out.println("Mean = sumx / n");
System.out.println("Mean = " + mean);
System.out.println("sumx2 = " + sumx2);
System.out.println("variance = " +

"(n * sumx2 - sumx * sumx)/ (n * (n-1))");
double var = (n * sumx2 - sumx * sumx)/ (n * (n-1));
System.out.println("Variance = "+ var);
double deviation = Math.pow(var, 0.5);
System.out.println("Deviation = "+ deviation);
double coeffVar = deviation/mean;
System.out.println("Coefficient of variation " +

"= deviation/mean");
System.out.println("Coefficient of variation = "

+ coeffVar);
explanation();

}

//Input is read and directed to processing methods
public static void main(String[] args)
{

System.out.println("MEAN AND VAR OF A LIST OF DATA");
//Example 19 page 9.
double DataVect[] = {5, 3, 4.5, 2};
meanVarVector(DataVect);

}

}

39, pag. 28. Mean and variance of a frequency table. OOP style:

//Program F39 meanFreqTable
//Finds the mean and variance of a table
//of absolute frequencies.
//Uses the method of the Sxx.

176 ANSWERS TO EXERCISES

//Gossipless, transparent, functional OOP style.
//Gossipless means that
//domestic problems are solve at home.
public class meanFreqTable
{

/ *
* No global variables

* /

//The outer application is instantiated
private static meanFreqTable p = new meanFreqTable();

//======== Inner class definition=======

//This inner class defines a new type: Table.
//It converts array F (two dimensional) into
//a class or object, ready for reuse.
private class Table

{
//The class Table has two main elements:
//1) The titles of the columns, whose length
//gives the number of columns.
//2) A matrix, whose length is the number of rows.

String[] Titles = { "x", "F", "xF", "x2F"};
double M[][] = new double[2000][Titles.length];
int nRows;
//The input of Table is defined here
//by means of an initialization procedure
//that is called constructor.
//The natural input is the frequency table
//which is consigned in a matrix FT with 2 columns.
Table(double[][] FT)

{
nRows = FT.length;
//The matrix M of Table is initialized
//Raw data go in columns 0 and 1.
//Squares in the second.
for(int i = 0; i < nRows; i++)
{

M[i][0] = FT[i][0];
M[i][1] = FT[i][1];
M[i][2] = M[i][0] * M[i][1];
M[i][3] = M[i][0] * M[i][2];

177

}
}

//Data of column k are summed.
//The input is a table, the output is of type double.
private double sum(Table T, int k)

{
double sum = 0;
for(int i = 0; i < T.nRows; i++)
sum = sum + T.M[i][k];
return sum;

}

private void printTable(Table T)
{

System.out.printf("%n %10s %10s %10s %10s",
T.Titles [0], T.Titles [1],

T.Titles [2],T.Titles [3]);
for (int i = 0; i < T.nRows; i++)

System.out.printf(
"%n %10.3f %10.3f %10.3f %10.3f ",
T.M[i][0], T.M[i][1], T.M[i][2], T.M[i][3]);

System.out.println();
}

}//end of inner class

//=== Methods of the outer class meanFreqTable ===

//Documentation is printed
private static void explanation()

{
System.out.println("\nCoeff around 0.01, " +

"homogeneous population." +
"\nCoeff around 0.1, " +
" +/- homogeneous population."+
"\nCoeff around 0.5, " +
" heterogenous population.");

}

// Mean and variance of a frequency table
private static void meanVarTable(double FreqTable[][])
{

//A table is declared
Table T = p.new Table(FreqTable);

178 ANSWERS TO EXERCISES

T.printTable(T);
double n = T.sum(T,1);
double sumxF = T.sum(T,2);
double sumx2F = T.sum(T,3);
System.out.printf("Sum %18.3f %10.3f %10.3f ",

n, sumxF, sumx2F);
double mean = sumxF/ n;
System.out.print(
"\n\n n = Number of objects = sum F = "+ (int) n);
System.out.printf("\n sum xF = %10.3f ", sumxF);
System.out.printf("\n sum x2F = %10.3f ", sumx2F);
System.out.printf("\n Mean = sum xF / n = %10.3f ", mean);
double Sxx = sumx2F - Math.pow(sumxF, 2)/n;
System.out.printf(

"\n Sxx = sum x2F - (sumxF)ˆ2 /n = %10.3f ", Sxx);
double var = Sxx / (n-1);
System.out.printf(

"\n Variance = Sxx/(n-1) = %10.3f ", var);
double deviation = Math.sqrt(var);
System.out.printf(

"\n Deviation = %10.3f ", deviation);
double c = deviation/ mean;
System.out.printf(

"\n Coefficient of variation = %10.3f \n", c);
explanation();

}

public static void main(String[] args)
{

System.out.println("MEAN-VAR OF A FREQUENCY TABLE");
//Frequency table: first coordinate = class marker
//second coordinate = frequency

//Example 20, pag 10
double FreqT[][] =

{{4, 3},
{7, 6},
{10, 10},
{13, 15},
{16, 4},
{19, 2}};

meanVarTable(FreqT);
}

}//end of class

179

41, pag. 28. Mean and variance of a cumulative frequency table:

//Program F41 meanCumTable
//Finds the mean and variance of a table
//of cumulative frequencies.
//Uses the method of the Sxx.
//Style: reuse.
public class meanCumTable
{

/ *
* No global variables

* /

//The outer application is instantiated
private static meanCumTable p = new meanCumTable();

//======== Inner class definition=======

//This inner class defines a new type: Table.
//It converts array F (two dimensional) into
//a class or object, ready for reuse.
private class Table

{
//The class Table has two main elements:
//1) The titles of the columns, whose length
//gives the number of columns.
//2) A matrix, whose length is the number of rows.

String[] Titles = { "x", "F", "xF", "x2F"};
double M[][] = new double[2000][Titles.length];
int nRows;
//The input of Table is defined here
//by means of an initialization procedure
//that is called constructor.
//The natural input is the frequency table
//which is consigned in a matrix FT with 2 columns.
Table(double[][] FT)

{
nRows = FT.length;
//The matrix M of Table is initialized
//Raw data go in columns 0 and 1.
//Squares in the second.
for(int i = 0; i < nRows; i++)

180 ANSWERS TO EXERCISES

{
M[i][0] = FT[i][0];
M[i][1] = FT[i][1];
M[i][2] = M[i][0] * M[i][1];
M[i][3] = M[i][0] * M[i][2];

}
}

//Data of column k are summed.
//The input is a table, the output is of type double.
private double sum(Table T, int k)

{
double sum = 0;
for(int i = 0; i < T.nRows; i++)
sum = sum + T.M[i][k];
return sum;

}

private void printTable(Table T)
{

System.out.printf("%n %10s %10s %10s %10s",
T.Titles [0], T.Titles [1],

T.Titles [2],T.Titles [3]);
for (int i = 0; i < T.nRows; i++)

System.out.printf(
"%n %10.3f %10.3f %10.3f %10.3f ",
T.M[i][0], T.M[i][1], T.M[i][2], T.M[i][3]);

System.out.println();
}

}//end of inner class

//=== Methods of the outer class meanCumTable ===

//Documentation is printed
private static void explanation()

{
System.out.println("\nCoeff around 0.01, " +

"homogeneous population." +
"\nCoeff around 0.1, " +
" +/- homogeneous population."+
"\nCoeff around 0.5, " +
" heterogenous population.");

}

181

// Mean and variance of a frequency table
private static void meanVarTable(double FreqTable[][])
{

//A table is declared
Table T = p.new Table(FreqTable);
T.printTable(T);
double n = T.sum(T,1);
double sumxF = T.sum(T,2);
double sumx2F = T.sum(T,3);
System.out.printf("Sum %18.3f %10.3f %10.3f ",

n, sumxF, sumx2F);
double mean = sumxF/ n;
System.out.print(
"\n\n n = Number of objects = sum F = "+ (int) n);
System.out.printf("\n sum xF = %10.3f ", sumxF);
System.out.printf("\n sum x2F = %10.3f ", sumx2F);
System.out.printf("\n Mean = sum xF / n = %10.3f ",

mean);
double Sxx = sumx2F - Math.pow(sumxF, 2)/n;
System.out.printf(

"\n Sxx = sum x2F - (sumxF)ˆ2 /n = %10.3f ", Sxx);
double var = Sxx / (n-1);
System.out.printf(

"\n Variance = Sxx/(n-1) = %10.3f ", var);
double deviation = Math.sqrt(var);
System.out.printf(

"\n Deviation = %10.3f ", deviation);
double c = deviation/ mean;
System.out.printf(

"\n Coefficient of variation = %10.3f \n", c);
explanation();

}

private static void meanVarCumTable(double[][] cumFreqT)
{

System.out.println(
"\nCUMULATIVE FREQUENCY TABLE");
for (int i = 0; i < cumFreqT.length; i++)
System.out.println(cumFreqT[i][0]+

"\t "+ cumFreqT[i][1]);
//Absolute frequencies are calculated
//and kept in FreqT, a table with two columns.
double FreqT[][] = new double[cumFreqT.length][2];

FreqT[0] = cumFreqT[0];
int lx = cumFreqT.length;

182 ANSWERS TO EXERCISES

for(int i = 1; i < lx; i++)
{

FreqT[i][0] = cumFreqT[i][0];
FreqT[i][1] = cumFreqT[i][1]-cumFreqT[i-1][1];

}
System.out.println(
"\n MEAN-VAR OF ASSOCIATED FREQUENCY TABLE");

meanVarTable(FreqT);//reuse
}

public static void main(String[] args)
{

System.out.println(
"MEAN-VAR OF A CUMULATIVE FREQUENCY TABLE");
//Cumulative table: first coordinate = class marker
//second coordinate = cumulative frequency

//Problem 1 of version 1, pag 42.
double cumFreqT[][] =

{{32,7},
{40,12},
{45,17},
{50,45},
{55,52},
{60,58}};

meanVarCumTable(cumFreqT);
}

}//end of class

43, pag. 33. The style is reuse because the program reuses a previous code
developed to calculate frequency tables. The style is not transparent because
the program uses diverse objects to make the task while the spirit of the pro-
gram sees only one object: an extended table with the borders of the intervals,
class markers, and the necessary columns to calculate the variance. The same
problem appears recurrently everywhere, and because we identify evolution in
first instance with reuse, we see that evolution and good style do not go hand in
hand. This observation allows to imagine a test to decide whether or not a given
software was devised by evolution else by refined stylistic intelligent developers.

44, pag. 33. Mean and variance of a frequency table, variant.

//Program F44 ListToFT2
//Groups data in interval classes.

183

//Outputs a frequency table with its
//mean and variance.
//Input: a list of data +
//inferior border and length of the intervals.
//Style = reuse.

public class ListToFT2
{

//The outer application is instantiated
private static ListToFT2 p = new ListToFT2();

//======== Inner class definition=======

//This inner class defines a new type: Table.
//It converts array F (two dimensional) into
//a class or object, ready for reuse.
private class Table

{
//The class Table has two main elements:
//1) The titles of the columns, whose length
//gives the number of columns.
//2) A matrix, whose length is the number of rows.

String[] Titles = { "x", "F", "xF", "x2F"};
double M[][] = new double[2000][Titles.length];
int nRows;
//The input of Table is defined here
//by means of an initialization procedure
//that is called constructor.
//The natural input is the frequency table
//which is consigned in a matrix FT with 2 columns.
Table(double[][] FT)

{
nRows = FT.length;
//The matrix M of Table is initialized
//Raw data go in columns 0 and 1.
//Squares in the second.
for(int i = 0; i < nRows; i++)

{
M[i][0] = FT[i][0];
M[i][1] = FT[i][1];
M[i][2] = M[i][0] * M[i][1];
M[i][3] = M[i][0] * M[i][2];

}
}

184 ANSWERS TO EXERCISES

//Data of column k are summed.
//The input is a table, the output is of type double.
private double sum(Table T, int k)

{
double sum = 0;
for(int i = 0; i < T.nRows; i++)

sum = sum + T.M[i][k];
return sum;

}

private void printTable(Table T)
{

System.out.printf("%n %10s %10s %10s %10s",
T.Titles [0], T.Titles [1],
T.Titles [2],T.Titles [3]);

for (int i = 0; i < T.nRows; i++)
System.out.printf(

"%n %10.3f %10.3f %10.3f %10.3f ",
T.M[i][0], T.M[i][1], T.M[i][2], T.M[i][3]);
System.out.println();

}
}//end of inner class

//=== Methods of the outer class ListToFT ===

private static void printList(double DataVector[],
String s)

{
System.out.println("\n " +s);
int nData = DataVector.length;

boolean go = true;
int nCols = 10;
int nRows = 9;
int counter = 0;
for (int i = 0; (i < nRows) & go; i++)

{
for (int j = 0; (j < nCols) & go; j++)

{
System.out.print(DataVector[i * 10 + j] + " ");
if (counter >= nData-1) go = false;

counter = counter+1;
}

185

System.out.println();
}

System.out.print("\nNumber of data = " +nData + "\n");
}

//List is the input, a frequency table is the output
private static double[][] group(double List[],

double Borders[], double classMarkers[])
{

int nClasses = classMarkers.length;
double FreqTable[][] = new double[nClasses][2];
int nData = List.length;

for(int j=0; j < nClasses; j++)
{

FreqTable[j][0] = classMarkers[j];
FreqTable[j][1] = 0;

}
for(int i=0; i< nData; i++)

{
for(int j=0; j < nClasses; j++)

{
if((Borders[j] <= List[i]) & (List[i] < Borders[j+1]))
FreqTable[j][1] =FreqTable[j][1] +1;

}

}

return FreqTable;
}

//Documentation is printed
private static void explanation()

{
System.out.println("\nCoeff around 0.01, " +

"homogeneous population." +
"\nCoeff around 0.1, " +
" +/- homogeneous population."+
"\nCoeff around 0.5, " +
" heterogenous population.");

}

// Mean and variance of a frequency table
private static void meanVarTable(double FreqTable[][])

186 ANSWERS TO EXERCISES

{
//A table is declared
Table T = p.new Table(FreqTable);
T.printTable(T);
double n = T.sum(T,1);
double sumxF = T.sum(T,2);
double sumx2F = T.sum(T,3);
System.out.printf("Sum %18.3f %10.3f %10.3f ",

n, sumxF, sumx2F);
double mean = sumxF/ n;
System.out.print(

"\n\n n = Number of objects = sum F = "+ (int) n);
System.out.printf("\n sum xF = %10.3f ", sumxF);
System.out.printf("\n sum x2F = %10.3f ", sumx2F);
System.out.printf("\n Mean = sum xF / n = %10.3f ",

mean);
double Sxx = sumx2F - Math.pow(sumxF, 2)/n;
System.out.printf(

"\n Sxx = sum x2F - (sumxF)ˆ2 /n = %10.3f ", Sxx);
double var = Sxx / (n-1);
System.out.printf(

"\n Variance = Sxx/(n-1) = %10.3f ", var);
double deviation = Math.sqrt(var);
System.out.printf(

"\n Deviation = %10.3f ", deviation);
double c = deviation/ mean;
System.out.printf(

"\n Coefficient of variation = %10.3f \n", c);
explanation();

}

//Prints data in vector
private static void printVector(double Vect[], int n)

{
//System.out.println("Data are");
for (int i = 0; i < n; i++)
System.out.println(Vect[i]);

}

//The borders and class marker of each interval
//is calculated. Data is grouped into a frequency table.
//final output = Mean and var of the freq table.
private static void work(double List[],

double infLimit, double intervalLength)
{

//Calculate minimal value of data

187

double min = List[0];
for(int j=1; j < List.length; j++)

if (List[j] < min) min = List[j];
//Calculate maximal value of data
double max = List[0];
for(int j=1; j < List.length; j++)

if (List[j] > max) max = List[j];
System.out.println("\nMax value = " + max);
//Calculates number of classes
int nClasses = (int) ((max- infLimit)/intervalLength)+1;
System.out.println("Number of classes = " + nClasses);
//Calculates interval borders and class markers
//Grouping mode 2: defines inferior limit and length
//of intervals.
double classMarkers[] = new double[nClasses];
double Borders[] = new double[nClasses+2];
Borders[0] = infLimit;
classMarkers[0] = infLimit + intervalLength/2;
for(int j=1; j < nClasses; j++)

classMarkers[j] = classMarkers[j-1] + intervalLength;
for(int j=1; j <= nClasses+1; j++)

Borders[j] = Borders[j-1] + intervalLength;
System.out.println("\nBorders are");
printVector(Borders,nClasses+1);
System.out.println("\nClass markers are");
printVector(classMarkers,nClasses);

double FreqTable[][] = new double[nClasses][2];
System.out.println(

"\nEXTENDED TABLE OF ABSOLUTE FREQUENCIES");
//reuse
FreqTable = group(List, Borders, classMarkers);
meanVarTable(FreqTable);

}

public static void main(String[] args)
{

//Declaration of data:
//observed values as a list
//Example 24 pag 12
double List[] =

{
48.5, 49.2, 51.0, 50.9, 48.7, 50.5, 49.5, 50.8, 50.0, 51.1,
50.7, 51.1, 49.3, 49.1, 50.0, 48.7, 51.2, 49.2, 49.0, 49.3,
49.1, 48.7, 48.6, 49.2, 49.9, 50.1, 50.1, 50.9, 52.4, 50.2,
49.5, 50.9, 51.4, 49.7, 49.8, 50.8, 50.3, 51.8, 50.0, 51.1,
51.3, 50.1, 50.4, 51.1, 49.8, 49.8, 50.1, 50.7, 50.1, 49.9,

188 ANSWERS TO EXERCISES

49.7, 51.1, 49.7, 49.9, 49.8, 50.5, 49.7, 50.8, 50.7, 50.7,
50.8, 51.5, 51.0

};
System.out.println("FROM DATA LIST TO FREQUENCY TABLE:") ;
printList(List, "Raw data");

//Calculate minimal value of data
double min = List[0];
for(int j=1; j < List.length; j++)

if (List[j] < min) min = List[j];
System.out.println("\nMin value = " + min);

double infLimit = min;
//Interval length
double intervalLength = 1;
System.out.println("Inferior limit = " + infLimit);
System.out.println("Interval length = "
+ intervalLength);
work(List, infLimit, intervalLength);

}
}//end of main classes

52, pag. 48. This is toolBox4, a program to process the basic statistics of
quantitative data.

//Program F52 toolBox4
/ *

This is a tool box of methods to calculate
some statistics of a list of data.

How to use this program:

1. Append it to any project and run it.
2. This program is a tool box because its main method

can be filled with any allowed method.
3. Most relevant allowed methods are listed in the main

but only one is activated, all others are
muted.

4. To silence one method, append // as a prefix.
To activate a method, delete the prefix //.

5. For a given task, choose the best suited method
among the diverse variants.

6. To run a method with your own data,
modify the inbuilt data according to your needs.

7. This first version has just one aim:

189

To implement fundamental tasks as transparently
as possible. So, it looks rather like an array of
independent, non interacting methods.

8. To inquire about unknown terms, drag the mouse over
the term and wait until Eclipse displays the
corresponding documentation.

9. To go from the name of a
method to its implementation:

Pose the cursor at the end of the line
with the name of the method and press the space bar,
next press F3: you will be transported to the
implementation of the method.

10. To mark a specific site in the program:
-Activate line numbering.
-Pose the cursor over the line you want to mark.
-Go to the corresponding number at the left margin

of the Editor Window and right click.
-Choose the Add Bookmark menu and punch it.
-A blue marker will appear in the right margin of the

Editor Window. By clicking over it, one can
return to the desired place.
One can also play with the menu
Window -> ShowView -> Outline
A list with all methods will appear:
click over any one and you will
transported to the corresponding place
along the text of the program.

* /

public class toolBox4
{

//The outer application is instantiated
private static toolBox4 p = new toolBox4();

//=============================
//MAIN--MAIN--MAIN--MAIN--MAIN
//=============================

public static void main(String[] args)

190 ANSWERS TO EXERCISES

{
meanVarList();
meanVarFreqTable();
meanVarCumTable();
groupData();

}

//==
// IMPLEMENTATIONS
//==

//==
// Methods of general use
//==

//Prints a list and its title
private static void printList(double DataVector[],

String title)
{
System.out.println("\n " + title);
int nData = DataVector.length;
boolean go = true;
int nCols = 10;
int nRows = 9;
int counter = 0;
for (int i = 0; (i < nRows) & go; i++)

{
for (int j = 0; (j < nCols) & go; j++)

{
System.out.print(DataVector[i * 10 + j] + " ");
if (counter >= nData-1) go = false;
counter = counter+1;

}
System.out.println();

}
System.out.print("\nNumber of data = " +nData + "\n");
}

191

//Prints n data in vector
private static void printVector(double Vect[], int n)
{
//System.out.println("Data are");
for (int i = 0; i < n; i++)

System.out.println(Vect[i]);
}

//Prints a matrix and is title
private static void printMatrix(double Matrix[][],

String title)
{
System.out.println(title);
int m = Matrix.length;

for (int i = 0; i < m; i++)
System.out.println(Matrix[i][0]+

"\t "+ Matrix[i][1]);
}

//Documentation is printed
private static void explanation()
{

System.out.println("\nCoeff around 0.01, " +
"homogeneous population." +
"\nCoeff around 0.1, " +
" +/- homogeneous population."+
"\nCoeff around 0.5, " +
" heterogenous population.");

}

//==
// MEAN AND VAR O A LIST OF DATA
//==

//======== Inner class definition=======

//This inner class defines a new type: Table.
//It converts array F (two dimensional) into
//a class or object, ready for reuse.
private class Table

192 ANSWERS TO EXERCISES

{
//The class Table fundamentally has three elements:
//a matrix with two columns and its length,
//which is the number of rows and
//the titles of columns.
int length;
String[] Titles = { "x", "x2 = xˆ2"};
double M[][] = new double[2000][2];

//The input of Table is defined here
//by means of an initialization procedure
//that is called constructor.
//The natural input is the raw data,
//which is consigned in a one dimensional array.
Table(double[] V)
{

length = V.length;
//The matrix M of Table is initialized
//Raw data go in the first column.
//Squares in the second.
for(int i = 0; i < length; i++)
{

M[i][0] = V[i];
M[i][1] = V[i] * V[i];

}
}

//Data of column k are summed.
//The input is a table, the output is of type double.
private double sum(Table T, int k)
{

double sum = 0;
for(int i = 0; i < T.length; i++)

sum = sum + T.M[i][k];
return sum;

}

private void printTable(Table T)
{

System.out.printf("%n %10s %11s", T.Titles [0], T.Titles [1]);
for (int i = 0; i < T.length; i++)

System.out.printf("%n %10.3f %10.3f ",
T.M[i][0], T.M[i][1]);

System.out.println();
}

193

}//end of inner class

//=== Methods of the outer class toolBox4 ===

//This is the core of the main class
//Here, commands are given to execute the overall task.
private static void meanVarVector(double[] V)
{

//A table is declared
Table T = p.new Table(V);
T.printTable(T);
double sumx = T.sum(T,0);
int n = T.length;
double mean = sumx/ n;
double sumx2 = T.sum(T,1);
System.out.printf("%n Sum %6.3f %10.3f ",

sumx, sumx2);
System.out.print("\n \n");
System.out.println("n = number of data = " + n);

System.out.println("\nsumx = " + sumx);
System.out.println("Mean = sumx / n");
System.out.println("Mean = " + mean);
System.out.println("sumx2 = " + sumx2);
System.out.println("variance = " +

"(n * sumx2 - sumx * sumx)/ (n * (n-1))");
double var = (n * sumx2 - sumx * sumx)/ (n * (n-1));
System.out.println("Variance = "+ var);
double deviation = Math.pow(var, 0.5);
System.out.println("Deviation = "+ deviation);
double coeffVar = deviation/mean;
System.out.println("Coefficient of variation " +

"= deviation/mean");
System.out.println("Coefficient of variation = "

+ coeffVar);
explanation();

}

//A list of data is processed
private static void meanVarList()
{

System.out.println("\n\n");
System.out.println("MEAN AND VAR OF A LIST OF DATA");
//Example 19 page 9.

194 ANSWERS TO EXERCISES

double List[] = {5, 3, 4.5, 2};
//Prints list and title
printList(List, "Raw data");
System.out.println("\nTABLE WITH x AND ITS SQUARE");
meanVarVector(List);

}

//=== =
// MEAN AND VAR OF A TABLE OF ABSOLUTE FREQUENCIES
//=== =

//======== Inner class definition=======

//This inner class defines a new type: Table.
//It converts array F (two dimensional) into
//a class or object, ready for reuse.
private class TableFreq

{
//The class Table has two main elements:
//1) The titles of the columns, whose length
//gives the number of columns.
//2) A matrix, whose length is the number of rows.

String[] Titles = { "x", "F", "xF", "x2F"};
double M[][] = new double[2000][Titles.length];
int nRows;
//The input of Table is defined here
//by means of an initialization procedure
//that is called constructor.
//The natural input is the frequency table
//which is consigned in a matrix FT with 2 columns.
TableFreq(double[][] FT)

{
nRows = FT.length;
//The matrix M of Table is initialized
//Raw data go in columns 0 and 1.
//Squares in the second.
for(int i = 0; i < nRows; i++)
{

M[i][0] = FT[i][0];
M[i][1] = FT[i][1];
M[i][2] = M[i][0] * M[i][1];
M[i][3] = M[i][0] * M[i][2];

}
}

195

//Data of column k are summed.
//The input is a table, the output is of type double.
private double sum(TableFreq T, int k)

{
double sum = 0;
for(int i = 0; i < T.nRows; i++)
sum = sum + T.M[i][k];
return sum;

}

private void printTable(TableFreq T)
{

System.out.println("\nExtended matrix to " +
"calculate variance:");

System.out.printf("%n %10s %10s %10s %10s",
T.Titles [0], T.Titles [1],

T.Titles [2],T.Titles [3]);
for (int i = 0; i < T.nRows; i++)

System.out.printf(
"%n %10.3f %10.3f %10.3f %10.3f ",
T.M[i][0], T.M[i][1], T.M[i][2], T.M[i][3]);

System.out.println();
}

}//end of inner class

//=== Methods of the outer class toolBox4 ===

// Mean and variance of a frequency table
private static void meanVarFreqTable(double FreqTable[] [])
{
//A table is declared
TableFreq T = p.new TableFreq(FreqTable);
T.printTable(T);
double n = T.sum(T,1);
double sumxF = T.sum(T,2);
double sumx2F = T.sum(T,3);
System.out.printf("Sum %18.3f %10.3f %10.3f ",

n, sumxF, sumx2F);
double mean = sumxF/ n;
System.out.print(

"\n\n n = Number of objects = sum F = "+ (int) n);
System.out.printf("\n sum xF = %10.3f ", sumxF);

196 ANSWERS TO EXERCISES

System.out.printf("\n sum x2F = %10.3f ", sumx2F);
System.out.printf("\n Mean = sum xF / n = %10.3f ", mean);
double Sxx = sumx2F - Math.pow(sumxF, 2)/n;
System.out.printf(

"\n Sxx = sum x2F - (sumxF)ˆ2 /n = %10.3f ", Sxx);
double var = Sxx / (n-1);
System.out.printf(

"\n Variance = Sxx/(n-1) = %10.3f ", var);
double deviation = Math.sqrt(var);
System.out.printf(

"\n Deviation = %10.3f ", deviation);
double c = deviation/ mean;
System.out.printf(

"\n Coefficient of variation = %10.3f \n", c);
explanation();
}

//A Frequency Table is processed
private static void meanVarFreqTable()
{
System.out.println("\n\n");
System.out.println("\n\nMEAN-VAR OF A FREQUENCY TABLE") ;
//Frequency table: first coordinate = class marker
//second coordinate = frequency

//Example 20, pag 10
double FreqT[][] =

{{4, 3},
{7, 6},
{10, 10},
{13, 15},
{16, 4},
{19, 2}};

printMatrix(FreqT, "\n Raw data");
meanVarFreqTable(FreqT);
}

//=== =
//MEAN AND VAR OF A TABLE OF CUMULATIVE FREQUENCIES
//=== =

private static void meanVarCumTable(double[][] cumFreqT)

197

{
printMatrix(cumFreqT, "\n Raw data");
//Absolute frequencies are calculated
//and kept in FreqT, a matrix with two columns.
double FreqT[][] = new double[cumFreqT.length][2];

FreqT[0] = cumFreqT[0];
int lx = cumFreqT.length;
for(int i = 1; i < lx; i++)
{

FreqT[i][0] = cumFreqT[i][0];
FreqT[i][1] = cumFreqT[i][1]-cumFreqT[i-1][1];

}
System.out.println("\n\n");
System.out.println(
"\n MEAN-VAR OF ASSOCIATED FREQUENCY TABLE");

meanVarFreqTable(FreqT);//reuse
}

//A cumulative frequency table is processed
public static void meanVarCumTable()
{

System.out.println(
"MEAN-VAR OF A CUMULATIVE FREQUENCY TABLE");
//Cumulative table: first coordinate = class marker
//second coordinate = cumulative frequency

//Problem 1 of version 1, pag 42.
double cumFreqT[][] =

{{32,7},
{40,12},
{45,17},
{50,45},
{55,52},
{60,58}};

meanVarCumTable(cumFreqT);
}

//=== =
// GROUPING OF DATA IN INTERVALS + MEAN & VAR
//=== =

//List is the input, a frequency table is the output

198 ANSWERS TO EXERCISES

private static double[][] group(double List[],
double Borders[], double classMarkers[])

{
int nClasses = classMarkers.length;
double FreqTable[][] = new double[nClasses][2];
int nData = List.length;

for(int j=0; j < nClasses; j++)
{

FreqTable[j][0] = classMarkers[j];
FreqTable[j][1] = 0;

}
for(int i=0; i< nData; i++)

{
for(int j=0; j < nClasses; j++)

{
if((Borders[j] <= List[i]) & (List[i] < Borders[j+1]))
FreqTable[j][1] =FreqTable[j][1] +1;

}

}

return FreqTable;
}

//Data is grouped into a frequency table.
//The borders and class marker of each interval
//is calculated.
//Final output = Mean and var of the freq table.
private static void group(double List[],
double infLimit, double intervalLength)
{

//Calculate minimal value of data
double min = List[0];
for(int j=1; j < List.length; j++)

if (List[j] < min) min = List[j];
//Calculate maximal value of data
double max = List[0];
for(int j=1; j < List.length; j++)

if (List[j] > max) max = List[j];
System.out.println("\nMax value = " + max);
//Calculates number of classes

199

int nClasses = (int) ((max- infLimit)/intervalLength)+1;
System.out.println("Number of classes = " + nClasses);
//Calculates interval borders and class markers
//Grouping mode 2: defines inferior limit and length
//of intervals.
double classMarkers[] = new double[nClasses];
double Borders[] = new double[nClasses+2];
Borders[0] = infLimit;
classMarkers[0] = infLimit + intervalLength/2;
for(int j=1; j < nClasses; j++)

classMarkers[j] = classMarkers[j-1] + intervalLength;
for(int j=1; j <= nClasses+1; j++)

Borders[j] = Borders[j-1] + intervalLength;
System.out.println("\nBorders are");
printVector(Borders,nClasses+1);
System.out.println("\nClass markers are");
printVector(classMarkers,nClasses);

double FreqTable[][] = new double[nClasses][2];
System.out.println(
"\nEXTENDED TABLE OF ABSOLUTE FREQUENCIES");
//reuse
FreqTable = group(List, Borders, classMarkers);
meanVarFreqTable(FreqTable);

}

public static void groupM1()
{
//Declaration of data:
//observed values as a list
//Example 24 pag 12
double List[] =
{
48.5, 49.2, 51.0, 50.9, 48.7, 50.5, 49.5, 50.8, 50.0, 51.1,
50.7, 51.1, 49.3, 49.1, 50.0, 48.7, 51.2, 49.2, 49.0, 49.3,
49.1, 48.7, 48.6, 49.2, 49.9, 50.1, 50.1, 50.9, 52.4, 50.2,
49.5, 50.9, 51.4, 49.7, 49.8, 50.8, 50.3, 51.8, 50.0, 51.1,
51.3, 50.1, 50.4, 51.1, 49.8, 49.8, 50.1, 50.7, 50.1, 49.9,
49.7, 51.1, 49.7, 49.9, 49.8, 50.5, 49.7, 50.8, 50.7, 50.7,
50.8, 51.5, 51.0
};
System.out.println("\n\n");
System.out.println("FROM DATA LIST TO FREQUENCY TABLE:") ;
printList(List, "Raw data");
//Borders of the intervals
double Borders[] = {48.5, 49.5, 50.5, 51.5, 52.5};

200 ANSWERS TO EXERCISES

double classMarkers[] = {49, 50, 51, 52};
int nClasses = classMarkers.length;
double FreqTable[][] = new double[nClasses][2];
printList(Borders, "Borders of intervals");
printList(classMarkers, "Class markers");
FreqTable = group(List, Borders, classMarkers);
meanVarFreqTable(FreqTable);
}

public static void groupM2()
{

//Declaration of data:
//observed values as a list
//Example 24 pag 12
double List[] =

{
48.5, 49.2, 51.0, 50.9, 48.7, 50.5, 49.5, 50.8, 50.0, 51.1,
50.7, 51.1, 49.3, 49.1, 50.0, 48.7, 51.2, 49.2, 49.0, 49.3,
49.1, 48.7, 48.6, 49.2, 49.9, 50.1, 50.1, 50.9, 52.4, 50.2,
49.5, 50.9, 51.4, 49.7, 49.8, 50.8, 50.3, 51.8, 50.0, 51.1,
51.3, 50.1, 50.4, 51.1, 49.8, 49.8, 50.1, 50.7, 50.1, 49.9,
49.7, 51.1, 49.7, 49.9, 49.8, 50.5, 49.7, 50.8, 50.7, 50.7,
50.8, 51.5, 51.0

};
System.out.println("\n\n");
System.out.println("FROM DATA LIST TO FREQUENCY TABLE:") ;
printList(List, "Raw data");

//Calculate minimal value of data
double min = List[0];
for(int j=1; j < List.length; j++)

if (List[j] < min) min = List[j];
System.out.println("\nMin value = " + min);

double infLimit = min;
//Interval length
double intervalLength = 1;
System.out.println("Inferior limit = " + infLimit);
System.out.println("Interval length = "

+ intervalLength);
group(List, infLimit, intervalLength);

}

201

//Data is grouped and processed
public static void groupData()
{

//Method 1: all borders and class markers
// are given by hand.
groupM1();
//Method 1: inferior border of first interval and
//the length of intervals are given.
groupM2();

}
}//End of main class

54, pag. 50. The function of encoding a frequency table as a graphic for
PSTricks is added to the toolbox.

//Program F54 toolBox5
/ *

This is a tool box of methods to calculate
some statistics of a list of data.

How to use this program:

1. Append it to any project and run it.
2. This program is a tool box because its main method

can be filled with any allowed method.
3. Most relevant allowed methods are listed in the main

but only one is activated, all others are
muted.

4. To silence one method, append // as a prefix.
To activate a method, delete the prefix //.

5. For a given task, choose the best suited method
among the diverse variants.

6. To run a method with your own data,
modify the inbuilt data according to your needs.

7. This first version has just one aim:
To implement fundamental tasks as transparently
as possible. So, it looks rather like an array of
independent, non interacting methods.

8. To inquire about unknown terms, drag the mouse over
the term and wait until Eclipse displays the
corresponding documentation.

9. To go from the name of a
method to its implementation:

Pose the cursor at the end of the line
with the name of the method and press the space bar,
next press F3: you will be transported to the

202 ANSWERS TO EXERCISES

implementation of the method.
10. To mark a specific site in the program:

-Activate line numbering.
-Pose the cursor over the line you want to mark.
-Go to the corresponding number at the left margin

of the Editor Window and right click.
-Choose the Add Bookmark menu and punch it.
-A blue marker will appear in the right margin of the

Editor Window. By clicking over it, one can
return to the desired place.
One can also play with the menu
Window -> ShowView -> Outline
A list with all methods will appear:
click over any one and you will
transported to the corresponding place
along the text of the program.

* /

public class toolBox5
{

//The outer application is instantiated
private static toolBox5 p = new toolBox5();

//=============================
//MAIN--MAIN--MAIN--MAIN--MAIN
//=============================

public static void main(String[] args)
{

meanVarList();
meanVarFreqTable();
meanVarCumTable();
groupData();
codePSTricks();

}

203

//==
// IMPLEMENTATIONS
//==

//==
// Methods of general use
//==

//Prints a list and its title
private static void printList(double DataVector[],

String title)
{
System.out.println("\n " + title);
int nData = DataVector.length;
boolean go = true;
int nCols = 10;
int nRows = 9;
int counter = 0;
for (int i = 0; (i < nRows) & go; i++)

{
for (int j = 0; (j < nCols) & go; j++)

{
System.out.print(DataVector[i * 10 + j] + " ");
if (counter >= nData-1) go = false;
counter = counter+1;

}
System.out.println();

}
System.out.print("\nNumber of data = " +nData + "\n");
}

//Prints n data in vector
private static void printVector(double Vect[], int n)
{
//System.out.println("Data are");
for (int i = 0; i < n; i++)

System.out.println(Vect[i]);
}

204 ANSWERS TO EXERCISES

//Prints a matrix and is title
private static void printMatrix(double Matrix[][],

String title)
{
System.out.println(title);
int m = Matrix.length;

for (int i = 0; i < m; i++)
System.out.println(Matrix[i][0]+

"\t "+ Matrix[i][1]);
}

//Documentation is printed
private static void explanation()
{

System.out.println("\nCoeff around 0.01, " +
"homogeneous population." +
"\nCoeff around 0.1, " +
" +/- homogeneous population."+
"\nCoeff around 0.5, " +
" heterogenous population.");

}

//==
// MEAN AND VAR O A LIST OF DATA
//==

//======== Inner class definition=======

//This inner class defines a new type: Table.
//It converts array F (two dimensional) into
//a class or object, ready for reuse.
private class Table
{

//The class Table fundamentally has three elements:
//a matrix with two columns and its length,
//which is the number of rows and
//the titles of columns.
int length;
String[] Titles = { "x", "x2 = xˆ2"};
double M[][] = new double[2000][2];

//The input of Table is defined here

205

//by means of an initialization procedure
//that is called constructor.
//The natural input is the raw data,
//which is consigned in a one dimensional array.
Table(double[] V)
{

length = V.length;
//The matrix M of Table is initialized
//Raw data go in the first column.
//Squares in the second.
for(int i = 0; i < length; i++)
{

M[i][0] = V[i];
M[i][1] = V[i] * V[i];

}
}

//Data of column k are summed.
//The input is a table, the output is of type double.
private double sum(Table T, int k)
{

double sum = 0;
for(int i = 0; i < T.length; i++)

sum = sum + T.M[i][k];
return sum;

}

private void printTable(Table T)
{

System.out.printf("%n %10s %11s", T.Titles [0], T.Titles [1]);
for (int i = 0; i < T.length; i++)

System.out.printf("%n %10.3f %10.3f ",
T.M[i][0], T.M[i][1]);

System.out.println();
}

}//end of inner class

//=== Methods of the outer class toolBox5 ===

//This is the core of the main class
//Here, commands are given to execute the overall task.
private static void meanVarVector(double[] V)
{

206 ANSWERS TO EXERCISES

//A table is declared
Table T = p.new Table(V);
T.printTable(T);
double sumx = T.sum(T,0);
int n = T.length;
double mean = sumx/ n;
double sumx2 = T.sum(T,1);
System.out.printf("%n Sum %6.3f %10.3f ",

sumx, sumx2);
System.out.print("\n \n");
System.out.println("n = number of data = " + n);

System.out.println("\nsumx = " + sumx);
System.out.println("Mean = sumx / n");
System.out.println("Mean = " + mean);
System.out.println("sumx2 = " + sumx2);
System.out.println("variance = " +

"(n * sumx2 - sumx * sumx)/ (n * (n-1))");
double var = (n * sumx2 - sumx * sumx)/ (n * (n-1));
System.out.println("Variance = "+ var);
double deviation = Math.pow(var, 0.5);
System.out.println("Deviation = "+ deviation);
double coeffVar = deviation/mean;
System.out.println("Coefficient of variation " +

"= deviation/mean");
System.out.println("Coefficient of variation = "

+ coeffVar);
explanation();

}

//A list of data is processed
private static void meanVarList()
{

System.out.println("\n\n");
System.out.println("MEAN AND VAR OF A LIST OF DATA");
//Example 19 page 9.
double List[] = {5, 3, 4.5, 2};
//Prints list and title
printList(List, "Raw data");
System.out.println("\nTABLE WITH x AND ITS SQUARE");
meanVarVector(List);

}

//=== =
// MEAN AND VAR OF A TABLE OF ABSOLUTE FREQUENCIES
//=== =

207

//======== Inner class definition=======

//This inner class defines a new type: Table.
//It converts array F (two dimensional) into
//a class or object, ready for reuse.
private class TableFreq

{
//The class Table has two main elements:
//1) The titles of the columns, whose length
//gives the number of columns.
//2) A matrix, whose length is the number of rows.

String[] Titles = { "x", "F", "xF", "x2F"};
double M[][] = new double[2000][Titles.length];
int nRows;
//The input of Table is defined here
//by means of an initialization procedure
//that is called constructor.
//The natural input is the frequency table
//which is consigned in a matrix FT with 2 columns.
TableFreq(double[][] FT)

{
nRows = FT.length;
//The matrix M of Table is initialized
//Raw data go in columns 0 and 1.
//Squares in the second.
for(int i = 0; i < nRows; i++)
{

M[i][0] = FT[i][0];
M[i][1] = FT[i][1];
M[i][2] = M[i][0] * M[i][1];
M[i][3] = M[i][0] * M[i][2];

}
}

//Data of column k are summed.
//The input is a table, the output is of type double.
private double sum(TableFreq T, int k)

{
double sum = 0;
for(int i = 0; i < T.nRows; i++)
sum = sum + T.M[i][k];
return sum;

}

208 ANSWERS TO EXERCISES

private void printTable(TableFreq T)
{

System.out.println("\nExtended matrix to " +
"calculate variance:");

System.out.printf("%n %10s %10s %10s %10s",
T.Titles [0], T.Titles [1],

T.Titles [2],T.Titles [3]);
for (int i = 0; i < T.nRows; i++)

System.out.printf(
"%n %10.3f %10.3f %10.3f %10.3f ",
T.M[i][0], T.M[i][1], T.M[i][2], T.M[i][3]);

System.out.println();
}

}//end of inner class

//=== Methods of the outer class toolBox5 ===

// Mean and variance of a frequency table
private static void meanVarFreqTable(double FreqTable[] [])
{
//A table is declared
TableFreq T = p.new TableFreq(FreqTable);
T.printTable(T);
double n = T.sum(T,1);
double sumxF = T.sum(T,2);
double sumx2F = T.sum(T,3);
System.out.printf("Sum %18.3f %10.3f %10.3f ",

n, sumxF, sumx2F);
double mean = sumxF/ n;
System.out.print(

"\n\n n = Number of objects = sum F = "+ (int) n);
System.out.printf("\n sum xF = %10.3f ", sumxF);
System.out.printf("\n sum x2F = %10.3f ", sumx2F);
System.out.printf("\n Mean = sum xF / n = %10.3f ", mean);
double Sxx = sumx2F - Math.pow(sumxF, 2)/n;
System.out.printf(

"\n Sxx = sum x2F - (sumxF)ˆ2 /n = %10.3f ", Sxx);
double var = Sxx / (n-1);
System.out.printf(

"\n Variance = Sxx/(n-1) = %10.3f ", var);
double deviation = Math.sqrt(var);
System.out.printf(

209

"\n Deviation = %10.3f ", deviation);
double c = deviation/ mean;
System.out.printf(

"\n Coefficient of variation = %10.3f \n", c);
explanation();
}

//A Frequency Table is processed
private static void meanVarFreqTable()
{
System.out.println("\n\n");
System.out.println("\n\nMEAN-VAR OF A FREQUENCY TABLE") ;
//Frequency table: first coordinate = class marker
//second coordinate = frequency

//Example 20, pag 10
double FreqT[][] =

{{4, 3},
{7, 6},
{10, 10},
{13, 15},
{16, 4},
{19, 2}};

printMatrix(FreqT, "\n Raw data");
meanVarFreqTable(FreqT);
}

//=== =
//MEAN AND VAR OF A TABLE OF CUMULATIVE FREQUENCIES
//=== =

private static void meanVarCumTable(double[][] cumFreqT)
{

printMatrix(cumFreqT, "\n Raw data");
//Absolute frequencies are calculated
//and kept in FreqT, a matrix with two columns.
double FreqT[][] = new double[cumFreqT.length][2];

FreqT[0] = cumFreqT[0];
int lx = cumFreqT.length;
for(int i = 1; i < lx; i++)
{

210 ANSWERS TO EXERCISES

FreqT[i][0] = cumFreqT[i][0];
FreqT[i][1] = cumFreqT[i][1]-cumFreqT[i-1][1];

}
System.out.println("\n\n");
System.out.println(
"\n MEAN-VAR OF ASSOCIATED FREQUENCY TABLE");

meanVarFreqTable(FreqT);//reuse
}

//A cumulative frequency table is processed
public static void meanVarCumTable()
{

System.out.println(
"MEAN-VAR OF A CUMULATIVE FREQUENCY TABLE");
//Cumulative table: first coordinate = class marker
//second coordinate = cumulative frequency

//Problem 1 of version 1, pag 42.
double cumFreqT[][] =

{{32,7},
{40,12},
{45,17},
{50,45},
{55,52},
{60,58}};

meanVarCumTable(cumFreqT);
}

//=== =
// GROUPING OF DATA IN INTERVALS + MEAN & VAR
//=== =

//List is the input, a frequency table is the output
private static double[][] group(double List[],

double Borders[], double classMarkers[])
{

int nClasses = classMarkers.length;
double FreqTable[][] = new double[nClasses][2];
int nData = List.length;

for(int j=0; j < nClasses; j++)
{

FreqTable[j][0] = classMarkers[j];

211

FreqTable[j][1] = 0;
}

for(int i=0; i< nData; i++)
{

for(int j=0; j < nClasses; j++)
{

if((Borders[j] <= List[i]) & (List[i] < Borders[j+1]))
FreqTable[j][1] =FreqTable[j][1] +1;

}

}

return FreqTable;
}

//Data is grouped into a frequency table.
//The borders and class marker of each interval
//is calculated.
//Final output = Mean and var of the freq table.
private static void group(double List[],
double infLimit, double intervalLength)
{

//Calculate minimal value of data
double min = List[0];
for(int j=1; j < List.length; j++)

if (List[j] < min) min = List[j];
//Calculate maximal value of data
double max = List[0];
for(int j=1; j < List.length; j++)

if (List[j] > max) max = List[j];
System.out.println("\nMax value = " + max);
//Calculates number of classes
int nClasses = (int) ((max- infLimit)/intervalLength)+1;
System.out.println("Number of classes = " + nClasses);
//Calculates interval borders and class markers
//Grouping mode 2: defines inferior limit and length
//of intervals.
double classMarkers[] = new double[nClasses];
double Borders[] = new double[nClasses+2];
Borders[0] = infLimit;
classMarkers[0] = infLimit + intervalLength/2;
for(int j=1; j < nClasses; j++)

212 ANSWERS TO EXERCISES

classMarkers[j] = classMarkers[j-1] + intervalLength;
for(int j=1; j <= nClasses+1; j++)

Borders[j] = Borders[j-1] + intervalLength;
System.out.println("\nBorders are");
printVector(Borders,nClasses+1);
System.out.println("\nClass markers are");
printVector(classMarkers,nClasses);

double FreqTable[][] = new double[nClasses][2];
System.out.println(
"\nEXTENDED TABLE OF ABSOLUTE FREQUENCIES");
//reuse
FreqTable = group(List, Borders, classMarkers);
meanVarFreqTable(FreqTable);

}

public static void groupM1()
{
//Declaration of data:
//observed values as a list
//Example 24 pag 12
double List[] =
{
48.5, 49.2, 51.0, 50.9, 48.7, 50.5, 49.5, 50.8, 50.0, 51.1,
50.7, 51.1, 49.3, 49.1, 50.0, 48.7, 51.2, 49.2, 49.0, 49.3,
49.1, 48.7, 48.6, 49.2, 49.9, 50.1, 50.1, 50.9, 52.4, 50.2,
49.5, 50.9, 51.4, 49.7, 49.8, 50.8, 50.3, 51.8, 50.0, 51.1,
51.3, 50.1, 50.4, 51.1, 49.8, 49.8, 50.1, 50.7, 50.1, 49.9,
49.7, 51.1, 49.7, 49.9, 49.8, 50.5, 49.7, 50.8, 50.7, 50.7,
50.8, 51.5, 51.0
};
System.out.println("\n\n");
System.out.println("FROM DATA LIST TO FREQUENCY TABLE:") ;
printList(List, "Raw data");
//Borders of the intervals
double Borders[] = {48.5, 49.5, 50.5, 51.5, 52.5};
double classMarkers[] = {49, 50, 51, 52};
int nClasses = classMarkers.length;
double FreqTable[][] = new double[nClasses][2];
printList(Borders, "Borders of intervals");
printList(classMarkers, "Class markers");
FreqTable = group(List, Borders, classMarkers);
meanVarFreqTable(FreqTable);
}

213

public static void groupM2()
{

//Declaration of data:
//observed values as a list
//Example 24 pag 12
double List[] =

{
48.5, 49.2, 51.0, 50.9, 48.7, 50.5, 49.5, 50.8, 50.0, 51.1,
50.7, 51.1, 49.3, 49.1, 50.0, 48.7, 51.2, 49.2, 49.0, 49.3,
49.1, 48.7, 48.6, 49.2, 49.9, 50.1, 50.1, 50.9, 52.4, 50.2,
49.5, 50.9, 51.4, 49.7, 49.8, 50.8, 50.3, 51.8, 50.0, 51.1,
51.3, 50.1, 50.4, 51.1, 49.8, 49.8, 50.1, 50.7, 50.1, 49.9,
49.7, 51.1, 49.7, 49.9, 49.8, 50.5, 49.7, 50.8, 50.7, 50.7,
50.8, 51.5, 51.0

};
System.out.println("\n\n");
System.out.println("FROM DATA LIST TO FREQUENCY TABLE:") ;
printList(List, "Raw data");

//Calculate minimal value of data
double min = List[0];
for(int j=1; j < List.length; j++)

if (List[j] < min) min = List[j];
System.out.println("\nMin value = " + min);

double infLimit = min;
//Interval length
double intervalLength = 1;
System.out.println("Inferior limit = " + infLimit);
System.out.println("Interval length = "

+ intervalLength);
group(List, infLimit, intervalLength);

}

//Data is grouped and processed
public static void groupData()
{

//Method 1: all borders and class markers
// are given by hand.
groupM1();
//Method 1: inferior border of first interval and
//the length of intervals are given.
groupM2();

}

214 ANSWERS TO EXERCISES

// ****************************
//Pstricks code
// ****************************

//Produces the pstricks code for the bar graph
//of a frequency table
public static void makeCode(double FreqTable[][])
{

System.out.println("\nPSTRICKS code for the FreqTable\n ");
int n = FreqTable.length;
//Width of each column
double deltaX = 4;
//The minimum x-coordinate is found
double Minxx = 1000;
for (int i = 0; i < n; i++)

if (FreqTable[i][0] < Minxx)
Minxx = FreqTable[i][0];

int Minxxx = (int) (deltaX * Minxx - deltaX);
//The maximum x-coordinate is found
double Maxx = 0;
for (int i = 0; i < n; i++)

if (FreqTable[i][0] > Maxx)
Maxx = FreqTable[i][0];

int Maxxx = (int) (deltaX * Maxx + deltaX);
//The maximum y-coordinate is found
int Maxyy = 0;
for (int i = 0; i < n; i++)

if (FreqTable[i][1] > Maxyy)
Maxyy = (int) FreqTable[i][1] + 2;

//Starting clause
//x- and y-units.
//The needed space is defined
System.out.println("\\begin{center}" +

"\n\\psset{xunit=0.15,yunit=0.3}" +
"\n\\begin{pspicture}(" + Minxxx +",0)(" +
Maxxx+ "," + Maxyy+")");
//A rectangle is drawn for each entry in the
//frequency table

int lim1,lim2;
for (int i = 0; i < n; i++)

215

{
lim1 = (int) (deltaX * FreqTable[i][0] -deltaX/2);
lim2 = (int) (lim1 + deltaX);
System.out.print(

"\n\\psline("+ lim1 + ",0)" +
"("+lim1 +"," + FreqTable[i][1]+ ")" +
"("+lim2 + ","+ FreqTable[i][1]+ ")" +
"("+lim2 + ","+ "0)"

);
}

//Horizontal axis
System.out.println("\n\\psline(" +

Minxxx +",0)("+ Maxxx + ",0)");

//Class markers (first coordinates) are indicated
for (int i = 0; i < n; i++)

{
int xposition = (int) (deltaX * FreqTable[i][0]);
int yposition = - 1;

System.out.print
(

"\n\\rput * ("+ xposition + "," + yposition+ "){"+
(int) (FreqTable[i][0])+ "}"

);
}

System.out.println();

//Labels for heights (second coordinates) are indicated
for (int i = 0; i < n; i++)

{
int xposition = (int) (deltaX * FreqTable[i][0]);
int yposition = (int) (1+ FreqTable[i][1]);
System.out.print

(
"\n\\rput * ("+ xposition + "," + yposition+ "){" +

(int) (FreqTable[i][1])+ "}"
);
}

//End clause
System.out.println("\n\\end{pspicture}");
System.out.println("\\end{center}");
}

public static void codePSTricks()

216 ANSWERS TO EXERCISES

{
double FreqT[][] =

{{3, 3},
{4, 3},
{5, 2},
{6, 2},
{7, 1},
{8, 1}};

printMatrix(FreqT, "\n\nFREQUENCY TABLE");
makeCode(FreqT);
}

}//End of main class

Problems of Chapter 3

59, pag. 56. The binomial distribution following a gossipless,
transparent, functional style:

//Program F59 binomial2
//This program outputs p(x)
//for given n and p,
//Style = gossipless, transparent, functional.

public class binomial2
{

//Prints n data in vector
private static void printVector(double[] Vect, int n)
{

//System.out.println("Data are");
for (int i = 0; i < n; i++)

System.out.println(Vect[i]);
}

//Sums data in vector with real numbers
private static double sumVector(double[] Vect, int n)
{

double sum = 0;
for (int i = 0; i < n; i++)

sum = sum + Vect[i];
return sum;

217

}

//Returns numb!
private static long factorial (long numb)
{

if (numb <=1) return 1;
else
return numb * factorial (numb -1);

}

//The binomial distribution
//for n repeats
//probability of head p,
//amplification factor F.
private static double[]

binomialDistribution(int n, double p, double F)
{

double[] pBinomial = new double[n+1];
double pBinomialF[] = new double[n+1];
double CoefficientsBinomial[] = new double[1000];
long biCoeff = 0;
for(int r = 0; r < n+1; r++)

{
biCoeff = factorial(n) /

(factorial(r) * factorial(n-r));
CoefficientsBinomial[r] = biCoeff;

}
System.out.println("\nCoefficients ");
printVector(CoefficientsBinomial,n+1);
System.out.println("Sum = " +

sumVector(CoefficientsBinomial,n+1));

for(int r = 0; r < n+1; r++)
{

pBinomial[r] = CoefficientsBinomial[r] *
Math.pow(p, r) * Math.pow(1-p, n-r);

}
System.out.println("\nProbabilities for 0,1,2...");

218 ANSWERS TO EXERCISES

System.out.println("Paste this vector to Excel" +
" and make a graphic");

printVector(pBinomial,n+1);
sumVector(pBinomial,n+1);
System.out.println("Sum = "

+ sumVector(pBinomial,n+1));
for(int k = 0; k < n+1; k++)
pBinomialF[k] = F * pBinomial[k];
System.out.println("\nAbsolute frequencies for F = " + F);
printVector(pBinomialF,n+1);
System.out.println("Sum = " +

sumVector(pBinomialF,n+1));
return pBinomial;

}

//Detailed computation of the mean
private static void detailedMean(int n,

double p,
double[] pBinomial)

{
System.out.println("\nDetailed mean: xp(x)");
double sum =0;
double term;
for(int r = 0; r < n+1; r++)
{

term = r * pBinomial[r];
System.out.println(r + " " + term) ;
sum = sum +term;

}
System.out.println("mean = sum xp(x) = " + sum) ;
System.out.println("Expected mean = np = " + n * p) ;

}

//Detailed computation of the variance
private static void detailedVariance(int n,

double p,
double[] pBinomial)

{

219

System.out.println("\nDetailed variance: " +
"(x-mean) * (-mean) * p(x)");

double sum =0;
double term;
for(int r = 0; r < n+1; r++)

{
term = Math.pow(r- n * p,2) * pBinomial[r];
System.out.println(r + " " + term) ;
sum = sum +term;

}
System.out.println("Variance = " +

"sum (x-mean) * (-mean) * p(x) = " + sum) ;
System.out.println(

"Expected var = np(1-p) = " + n * p* (1-p)) ;
System.out.println("Deviation = " + Math.sqrt(sum));

}

private static void binomialDist()
{

System.out.println("BINOMIAL DISTRIBUTION ");
double pBinomial[] = new double[1000];
int n= 7;
double p = 0.3;
int F = 35;
System.out.println("n= " + n);
System.out.println("p = " + p);
System.out.println("F = " + F);
pBinomial = binomialDistribution(n,p, F);
detailedMean(n,p,pBinomial);
detailedVariance(n,p,pBinomial);

}

public static void main(String[] args)
{

binomialDist();
}

}

220 ANSWERS TO EXERCISES

60, pag. 56. The code to calculate a binomial distribution
together with mean, variance and probability of a closed interval.

//Program F60 binomial3
//This program outputs p(x)
//for given n and p.
//Mean, variance and probability of a closed interval
//are also enabled.
//Style = gossipless, transparent, functional.

public class binomial3
{

//Prints n data in vector
private static void printVector(double[] Vect, int n)
{

//System.out.println("Data are");
for (int i = 0; i < n; i++)

System.out.println(Vect[i]);
}

//Sums data in vector with real numbers
private static double sumVector(double[] Vect, int n)
{

double sum = 0;
for (int i = 0; i < n; i++)

sum = sum + Vect[i];
return sum;

}

//Returns numb!
private static long factorial (long numb)
{

if (numb <=1) return 1;
else
return numb * factorial (numb -1);

}

221

//The binomial distribution
//for n repeats
//probability of head p,
//amplification factor F.
private static double[] binomialDistribution(int n,

double p, double F)
{

double[] pBinomial = new double[n+1];
double[] pBinomialF = new double[n+1];
double[] CoefficientsBinomial = new double[1000];
long biCoeff = 0;
for(int r = 0; r < n+1; r++)

{
biCoeff = factorial(n) /

(factorial(r) * factorial(n-r));
CoefficientsBinomial[r] = biCoeff;

}
System.out.println("\nCoefficients ");
printVector(CoefficientsBinomial,n+1);
System.out.println("Sum = " +

sumVector(CoefficientsBinomial,n+1));

for(int r = 0; r < n+1; r++)
{

pBinomial[r] = CoefficientsBinomial[r] *
Math.pow(p, r) * Math.pow(1-p, n-r);

}
System.out.println("\nProbabilities for 0,1,2...");
System.out.println("Paste this vector to Excel" +

" and make a graphic");
printVector(pBinomial,n+1);
sumVector(pBinomial,n+1);
System.out.println("Sum = "

+ sumVector(pBinomial,n+1));
for(int k = 0; k < n+1; k++)
pBinomialF[k] = F * pBinomial[k];
System.out.println("\nAbsolute frequencies for F = " + F);
printVector(pBinomialF,n+1);

222 ANSWERS TO EXERCISES

System.out.println("Sum = " +
sumVector(pBinomialF,n+1));

return pBinomial;
}

//Probability of closed region (extremes included)
private static double pClosedRegion(int n,

double p, int limitInf, int limitMax,
double[] pBinomial)

{
double sum =0;
for(int r = limitInf; r <= limitMax; r++)

sum = sum + pBinomial[r];

return sum;
}

//Detailed computation of the mean
private static void detailedMean(int n,

double p,
double[] pBinomial)

{
System.out.println("\nDetailed mean: xp(x)");
double sum =0;
double term;
for(int r = 0; r < n+1; r++)
{

term = r * pBinomial[r];
System.out.println(r + " " + term) ;
sum = sum +term;

}
System.out.println("mean = sum xp(x) = " + sum) ;
System.out.println("Expected mean = np = " + n * p) ;

}

//Detailed computation of the variance
private static void detailedVariance(int n,

double p,
double[] pBinomial)

223

{
System.out.println("\nDetailed variance: " +

"(x-mean) * (-mean) * p(x)");
double sum =0;
double term;
for(int r = 0; r < n+1; r++)

{
term = Math.pow(r- n * p,2) * pBinomial[r];
System.out.println(r + " " + term) ;
sum = sum +term;

}
System.out.println("Variance = " +

"sum (x-mean) * (-mean) * p(x) = " + sum) ;
System.out.println(

"Expected var = np(1-p) = " + n * p* (1-p)) ;
System.out.println("Deviation = " + Math.sqrt(sum));

}

private static void binomialDist()
{

System.out.println("BINOMIAL DISTRIBUTION ");
double pBinomial[] = new double[1000];
int n= 5;
double p = 0.2;

int F = 35;
System.out.println("n= " + n);
System.out.println("p = " + p);
System.out.println("F = " + F);
pBinomial = binomialDistribution(n,p, F);
detailedMean(n,p,pBinomial);
detailedVariance(n,p,pBinomial);
//Probability of a closed region (extremes included)
int limitInf = 2;
int limitMax = 4;
double pR = pClosedRegion(n,p,limitInf,limitMax,pBinom ial);
System.out.println("\nProb of closed region in " +

"within "+ limitInf + " and " + limitMax +
",\nextremes included = " + pR) ;

224 ANSWERS TO EXERCISES

}

public static void main(String[] args)
{

binomialDist();
}

}

62, pag. 57.

//Program F62 binomial4
//This program outputs p(x)
//for given n and p.
//Mean, variance and probability of a closed interval
//and a solution to the inverse problem
//are also enabled.
//Style = gossipless, transparent, functional.

public class binomial4
{

//Prints n data in vector
private static void printVector(double[] Vect, int n)
{

//System.out.println("Data are");
for (int i = 0; i < n; i++)

System.out.println(i + "\t" + Vect[i]);
}

//Sums data in vector with real numbers
private static double sumVector(double[] Vect, int n)
{

double sum = 0;
for (int i = 0; i < n; i++)

sum = sum + Vect[i];

225

return sum;
}

//The binomial distribution
//for n repeats
//probability of head p,
//amplification factor F.
//Arithmetic trickery in action.
private static double[] binomialDistribution(int n,

double p, double F)
{
double[] pBinomial = new double[n+1];
double[] pBinomialF = new double[n+1];
double[] CoefficientsBinomial = new double[n+1];
double biCoeff = 1;
CoefficientsBinomial[0] = biCoeff;
for(int r = 1; r < n+1; r++)
{

biCoeff = biCoeff * (n+1-r) / r;
CoefficientsBinomial[r] = biCoeff;

}
System.out.println("\nCoefficients ");
printVector(CoefficientsBinomial,n+1);
System.out.println("Sum = " +

sumVector(CoefficientsBinomial,n+1));

for(int r = 0; r < n+1; r++)
{

pBinomial[r] = CoefficientsBinomial[r] *
Math.exp(r * Math.log(p) + (n-r) * Math.log(1-p));

}
System.out.println("\nProbabilities for 0,1,2...");
System.out.println("Paste this vector to Excel" +

" and make a graphic");
printVector(pBinomial,n+1);
sumVector(pBinomial,n+1);
System.out.println("Sum = "

+ sumVector(pBinomial,n+1));

226 ANSWERS TO EXERCISES

for(int k = 0; k < n+1; k++)
pBinomialF[k] = F * pBinomial[k];

System.out.println("\nAbsolute frequencies for F = " + F);
printVector(pBinomialF,n+1);
System.out.println("Sum = " +

sumVector(pBinomialF,n+1));
return pBinomial;
}

//Probability of closed region (extremes included)
private static double pClosedRegion(int limitInf,

int limitMax, double[] pBinomial)
{

double sum =0;
for(int r = limitInf; r <= limitMax; r++)

sum = sum + pBinomial[r];

return sum;
}

//Detailed computation of the mean
private static void detailedMean(int n,

double p,
double[] pBinomial)

{
System.out.println("\nDetailed mean: xp(x)");
double sum =0;
double term;
for(int r = 0; r < n+1; r++)
{

term = r * pBinomial[r];
System.out.println(r + " " + term) ;
sum = sum +term;

}
System.out.println("mean = sum xp(x) = " + sum) ;
System.out.println("Expected mean = np = " + n * p) ;

}

227

//Detailed computation of the variance
private static void detailedVariance(int n,

double p,
double[] pBinomial)

{
System.out.println("\nDetailed variance: " +

"(x-mean) * (-mean) * p(x)");
double sum =0;
double term;
for(int r = 0; r < n+1; r++)

{
term = Math.pow(r- n * p,2) * pBinomial[r];
System.out.println(r + " " + term) ;
sum = sum +term;

}
System.out.println("Variance = " +

"sum (x-mean) * (-mean) * p(x) = " + sum) ;
System.out.println(

"Expected var = np(1-p) = " + n * p* (1-p)) ;
System.out.println("Deviation = " + Math.sqrt(sum));

}

//Critical value for significance level alpha, one tail
private static void critical1(double[] pBinomial,

double alpha)
{

int numbTails = 1;
System.out.println("\nLower tail");
double cumulative = 0;
double target = alpha;
int i=-1;
while(cumulative < target)

{
i = i+1;
cumulative = cumulative + pBinomial[i];
System.out.println(i + " cumulative = " + cumulative);

}

228 ANSWERS TO EXERCISES

System.out.println("To cumulate in the lower tail "
+ target

+ ", \nwe need the first " + i + " Terms.");
System.out.println("The critical value for alpha = "

+ alpha
+ ", numb of tails = " + numbTails
+ "\nin the lower tail is "
+ i+ ". All terms below it are extreme.\n");

System.out.println("Upper tail");
int n = pBinomial.length;
i= n;
cumulative = 0;
while(cumulative < target)

{
i = i-1;
cumulative = cumulative + pBinomial[i];
System.out.println(i + " cumulative = " + cumulative);

}

System.out.println("To cumulate in the upper tail "
+ target

+ ", \nwe need term " + i + " and above.");
System.out.println("The critical value for alpha = "

+ alpha
+ ", numb of tails = " + numbTails
+ "\nin the upper tail is "
+ i + ". All terms above it are extreme.\n");

}

//Critical value for significance level alpha, two tails
private static void critical2(double[] pBinomial,

double alpha)
{

critical1(pBinomial,alpha/2);
}

229

//Critical value for significance level alpha, one tail
private static void critical1(int n, double p,

double alpha)
{
int numbTails = 1;
System.out.println("\nLower tail");
double cumulative = 0;
double target = alpha;
int i=-1;
double pBinomial[] = new double[n+1];
pBinomial = binomialDistribution(n,p, 1);
while(cumulative < target)
{

i = i+1;
cumulative = cumulative + pBinomial[i];
System.out.println(i + " cumulative = " + cumulative);

}
System.out.println("To cumulate in the lower tail "

+ target
+ ", \nwe need the first " + i + " Terms.");
System.out.println("The critical value for alpha = "

+ alpha
+ ", numb of tails = " + numbTails
+ "\nin the lower tail is "
+ i+ ". All terms below it are extreme.\n");

System.out.println("Upper tail");
i= n+1;
cumulative = 0;
while(cumulative < target)
{

i = i-1;
cumulative = cumulative + pBinomial[i];
System.out.println(i + " cumulative = " + cumulative);

}

System.out.println("To cumulate in the upper tail "
+ target

+ ", \nwe need term " + i + " and above.");
System.out.println("The critical value for alpha = "

230 ANSWERS TO EXERCISES

+ alpha
+ ", numb of tails = " + numbTails
+ "\nin the upper tail is "
+ i + ". All terms above it are extreme.\n");

}

//Critical value for significance level alpha, two tails
private static void critical2(int n, double p,

double alpha)
{
critical1(n,p,alpha/2);
}

private static void binomialDist()
{

System.out.println("BINOMIAL DISTRIBUTION ");

int n= 1000;
double p = 0.2;
double[] pBinomial = new double[n+1];
int F = 35;
System.out.println("n= " + n);
System.out.println("p = " + p);
System.out.println("F = " + F);
pBinomial = binomialDistribution(n,p, F);
detailedMean(n,p,pBinomial);
detailedVariance(n,p,pBinomial);
//Probability of a closed region (extremes included)
int limitInf = 2;
int limitMax = 4;
double pR = pClosedRegion(limitInf,limitMax,pBinomial) ;
System.out.println("\nProb of closed region in " +

"within "+ limitInf + " and " + limitMax +
",\nextremes included = " + pR) ;

//Inverse problem: find critical values
double alpha = 0.02;
System.out.println("Binomial distribution: \n" +

231

" n = " + n + ", p = " + p + ", " +
"significance level = alpha = " + alpha);

System.out.println("\nCRITICAL VALUES");
System.out.println("\nONE TAIL, alpha = " +alpha);
System.out.println("\nTerms and cumulative values");
critical1(pBinomial,alpha);
critical1(n,p, alpha);
System.out.println("\nTWO TAILS, alpha = " +alpha);
System.out.println("\nTerms and cumulative values");
critical2(pBinomial, alpha);
critical2(n,p, alpha);

}

public static void main(String[] args)
{

binomialDist();
}

}

63, pag. 57. This is toolBox6:

//Program F63 toolBox6
/ *

This is a tool box of methods to calculate
a) Some statistics of a list of data.
b) The Pstricks code for a bar diagram
c) The binomial distribution and its critical values

How to use this program:

1. Append it to any project and run it.
2. This program is a tool box because its main method

can be filled with any allowed method.
3. Most relevant allowed methods are listed in the main

but only one is activated, all others are
muted.

232 ANSWERS TO EXERCISES

4. To silence one method, append // as a prefix.
To activate a method, delete the prefix //.

5. For a given task, choose the best suited method
among the diverse variants.

6. To run a method with your own data,
modify the inbuilt data according to your needs.

7. This first version has just one aim:
To implement fundamental tasks as transparently
as possible. So, it looks rather like an array of
independent, non interacting methods.

8. To inquire about unknown terms, drag the mouse over
the term and wait until Eclipse displays the
corresponding documentation.

9. To go from the name of a
method to its implementation:

Pose the cursor at the end of the line
with the name of the method and press the space bar,
next press F3: you will be transported to the
implementation of the method.

10. To mark a specific site in the program:
-Activate line numbering.
-Pose the cursor over the line you want to mark.
-Go to the corresponding number at the left margin

of the Editor Window and right click.
-Choose the Add Bookmark menu and punch it.
-A blue marker will appear in the right margin of the

Editor Window. By clicking over it, one can
return to the desired place.
One can also play with the menu
Window -> ShowView -> Outline
A list with all methods will appear:
click over any one and you will
transported to the corresponding place
along the text of the program.

* /

233

public class toolBox6
{

//The outer application is instantiated
private static toolBox6 p = new toolBox6();

//=============================
//MAIN--MAIN--MAIN--MAIN--MAIN
//=============================

public static void main(String[] args)
{

meanVarList();
meanVarFreqTable();
meanVarCumTable();
groupData();
codePSTricks();
binomialDistribution();

}

//==
// IMPLEMENTATIONS
//==

//==
// Methods of general use
//==

234 ANSWERS TO EXERCISES

//Prints a list and its title
private static void printList(double[] DataVector,

String title)
{
System.out.println("\n " + title);
int nData = DataVector.length;
boolean go = true;
int nCols = 10;
int nRows = 9;
int counter = 0;
for (int i = 0; (i < nRows) & go; i++)

{
for (int j = 0; (j < nCols) & go; j++)

{
System.out.print(DataVector[i * 10 + j] + " ");
if (counter >= nData-1) go = false;
counter = counter+1;

}
System.out.println();

}
System.out.print("\nNumber of data = " +nData + "\n");
}

//Prints n data in vector
private static void printVector(double[] Vect, int n)
{
//System.out.println("Data are");
for (int i = 0; i < n; i++)

System.out.println(i + "\t" + Vect[i]);
}

//Sums data in vector with real numbers
private static double sumVector(double[] Vect, int n)
{
double sum = 0;
for (int i = 0; i < n; i++)
sum = sum + Vect[i];

235

return sum;
}

//Prints a matrix and is title
private static void printMatrix(double[][] Matrix,

String title)
{
System.out.println(title);
int m = Matrix.length;

for (int i = 0; i < m; i++)
System.out.println(Matrix[i][0]+

"\t "+ Matrix[i][1]);
}

//Documentation is printed
private static void explanation()
{

System.out.println("\nCoeff around 0.01, " +
"homogeneous population." +
"\nCoeff around 0.1, " +
" +/- homogeneous population."+
"\nCoeff around 0.5, " +
" heterogenous population.");

}

//==
// MEAN AND VAR O A LIST OF DATA
//==

//======== Inner class definition=======

//This inner class defines a new type: Table.
//It converts array F (two dimensional) into
//a class or object, ready for reuse.
private class Table

236 ANSWERS TO EXERCISES

{
//The class Table fundamentally has three elements:
//a matrix with two columns and its length,
//which is the number of rows and
//the titles of columns.
int length;
String[] Titles = { "x", "x2 = xˆ2"};
double[][] M = new double[2000][2];

//The input of Table is defined here
//by means of an initialization procedure
//that is called constructor.
//The natural input is the raw data,
//which is consigned in a one dimensional array.
Table(double[] V)
{

length = V.length;
//The matrix M of Table is initialized
//Raw data go in the first column.
//Squares in the second.
for(int i = 0; i < length; i++)
{

M[i][0] = V[i];
M[i][1] = V[i] * V[i];

}
}

//Data of column k are summed.
//The input is a table, the output is of type double.
private double sum(Table T, int k)
{

double sum = 0;
for(int i = 0; i < T.length; i++)

sum = sum + T.M[i][k];
return sum;

}

private void printTable(Table T)
{

237

System.out.printf("%n %10s %11s", T.Titles [0], T.Titles [1]);
for (int i = 0; i < T.length; i++)

System.out.printf("%n %10.3f %10.3f ",
T.M[i][0], T.M[i][1]);

System.out.println();
}

}//end of inner class

//=== Methods of the outer class ===

//This is the core of the main class
//Here, commands are given to execute the overall task.
private static void meanVarVector(double[] V)
{

//A table is declared
Table T = p.new Table(V);
T.printTable(T);
double sumx = T.sum(T,0);
int n = T.length;
double mean = sumx/ n;
double sumx2 = T.sum(T,1);
System.out.printf("%n Sum %6.3f %10.3f ",

sumx, sumx2);
System.out.print("\n \n");
System.out.println("n = number of data = " + n);

System.out.println("\nsumx = " + sumx);
System.out.println("Mean = sumx / n");
System.out.println("Mean = " + mean);
System.out.println("sumx2 = " + sumx2);
System.out.println("variance = " +

"(n * sumx2 - sumx * sumx)/ (n * (n-1))");
double var = (n * sumx2 - sumx * sumx)/ (n * (n-1));
System.out.println("Variance = "+ var);
double deviation = Math.pow(var, 0.5);
System.out.println("Deviation = "+ deviation);

238 ANSWERS TO EXERCISES

double coeffVar = deviation/mean;
System.out.println("Coefficient of variation " +

"= deviation/mean");
System.out.println("Coefficient of variation = "

+ coeffVar);
explanation();

}

//A list of data is processed
private static void meanVarList()
{

System.out.println("\n\n");
System.out.println("MEAN AND VAR OF A LIST OF DATA");
//Example 19 page 9.
double[] List = {5, 3, 4.5, 2};
//Prints list and title
printList(List, "Raw data");
System.out.println("\nTABLE WITH x AND ITS SQUARE");
meanVarVector(List);

}

//=== =
// MEAN AND VAR OF A TABLE OF ABSOLUTE FREQUENCIES
//=== =

//======== Inner class definition=======

//This inner class defines a new type: Table.
//It converts array F (two dimensional) into
//a class or object, ready for reuse.
private class TableFreq

{
//The class Table has two main elements:
//1) The titles of the columns, whose length
//gives the number of columns.
//2) A matrix, whose length is the number of rows.

String[] Titles = { "x", "F", "xF", "x2F"};

239

double[][] M = new double[2000][Titles.length];
int nRows;
//The input of Table is defined here
//by means of an initialization procedure
//that is called constructor.
//The natural input is the frequency table
//which is consigned in a matrix FT with 2 columns.
TableFreq(double[][] FT)

{
nRows = FT.length;
//The matrix M of Table is initialized
//Raw data go in columns 0 and 1.
//Squares in the second.
for(int i = 0; i < nRows; i++)
{

M[i][0] = FT[i][0];
M[i][1] = FT[i][1];
M[i][2] = M[i][0] * M[i][1];
M[i][3] = M[i][0] * M[i][2];

}
}

//Data of column k are summed.
//The input is a table, the output is of type double.
private double sum(TableFreq T, int k)

{
double sum = 0;
for(int i = 0; i < T.nRows; i++)
sum = sum + T.M[i][k];
return sum;

}

private void printTable(TableFreq T)
{

System.out.println("\nExtended matrix to " +
"calculate variance:");

System.out.printf("%n %10s %10s %10s %10s",
T.Titles [0], T.Titles [1],

T.Titles [2],T.Titles [3]);

240 ANSWERS TO EXERCISES

for (int i = 0; i < T.nRows; i++)
System.out.printf(

"%n %10.3f %10.3f %10.3f %10.3f ",
T.M[i][0], T.M[i][1], T.M[i][2], T.M[i][3]);

System.out.println();
}

}//end of inner class

//=== Methods of the outer class ===

// Mean and variance of a frequency table
private static void meanVarFreqTable(double[][] FreqTab le)
{
//A table is declared
TableFreq T = p.new TableFreq(FreqTable);
T.printTable(T);
double n = T.sum(T,1);
double sumxF = T.sum(T,2);
double sumx2F = T.sum(T,3);
System.out.printf("Sum %18.3f %10.3f %10.3f ",

n, sumxF, sumx2F);
double mean = sumxF/ n;
System.out.print(

"\n\n n = Number of objects = sum F = "+ (int) n);
System.out.printf("\n sum xF = %10.3f ", sumxF);
System.out.printf("\n sum x2F = %10.3f ", sumx2F);
System.out.printf("\n Mean = sum xF / n = %10.3f ", mean);
double Sxx = sumx2F - Math.pow(sumxF, 2)/n;
System.out.printf(

"\n Sxx = sum x2F - (sumxF)ˆ2 /n = %10.3f ", Sxx);
double var = Sxx / (n-1);
System.out.printf(

"\n Variance = Sxx/(n-1) = %10.3f ", var);
double deviation = Math.sqrt(var);
System.out.printf(

"\n Deviation = %10.3f ", deviation);

241

double c = deviation/ mean;
System.out.printf(

"\n Coefficient of variation = %10.3f \n", c);
explanation();
}

//A Frequency Table is processed
private static void meanVarFreqTable()
{
System.out.println("\n\n");
System.out.println("\n\nMEAN-VAR OF A FREQUENCY TABLE") ;
//Frequency table: first coordinate = class marker
//second coordinate = frequency

//Example 20, pag 10
double[][] FreqT =

{{4, 3},
{7, 6},
{10, 10},
{13, 15},
{16, 4},
{19, 2}};

printMatrix(FreqT, "\n Raw data");
meanVarFreqTable(FreqT);
}

//=== =
//MEAN AND VAR OF A TABLE OF CUMULATIVE FREQUENCIES
//=== =

private static void meanVarCumTable(double[][] cumFreqT)
{

printMatrix(cumFreqT, "\n Raw data");
//Absolute frequencies are calculated
//and kept in FreqT, a matrix with two columns.

242 ANSWERS TO EXERCISES

double[][] FreqT = new double[cumFreqT.length][2];

FreqT[0] = cumFreqT[0];
int lx = cumFreqT.length;
for(int i = 1; i < lx; i++)
{

FreqT[i][0] = cumFreqT[i][0];
FreqT[i][1] = cumFreqT[i][1]-cumFreqT[i-1][1];

}
System.out.println("\n\n");
System.out.println(
"\n MEAN-VAR OF ASSOCIATED FREQUENCY TABLE");

meanVarFreqTable(FreqT);//reuse
}

//A cumulative frequency table is processed
public static void meanVarCumTable()
{

System.out.println(
"MEAN-VAR OF A CUMULATIVE FREQUENCY TABLE");
//Cumulative table: first coordinate = class marker
//second coordinate = cumulative frequency

//Problem 1 of version 1, pag 42.
double cumFreqT[][] =

{{32,7},
{40,12},
{45,17},
{50,45},
{55,52},
{60,58}};

meanVarCumTable(cumFreqT);
}

//=== =
// GROUPING OF DATA IN INTERVALS + MEAN & VAR
//=== =

243

//List is the input, a frequency table is the output
private static double[][] group(double[] List,

double[] Borders, double[] classMarkers)
{

int nClasses = classMarkers.length;
double[][] FreqTable = new double[nClasses][2];
int nData = List.length;

for(int j=0; j < nClasses; j++)
{

FreqTable[j][0] = classMarkers[j];
FreqTable[j][1] = 0;

}
for(int i=0; i< nData; i++)

{
for(int j=0; j < nClasses; j++)

{
if((Borders[j] <= List[i]) & (List[i] < Borders[j+1]))
FreqTable[j][1] =FreqTable[j][1] +1;

}

}

return FreqTable;
}

//Data is grouped into a frequency table.
//The borders and class marker of each interval
//is calculated.
//Final output = Mean and var of the freq table.
private static void group(double[] List,
double infLimit, double intervalLength)
{

244 ANSWERS TO EXERCISES

//Calculate minimal value of data
double min = List[0];
for(int j=1; j < List.length; j++)

if (List[j] < min) min = List[j];
//Calculate maximal value of data
double max = List[0];
for(int j=1; j < List.length; j++)

if (List[j] > max) max = List[j];
System.out.println("\nMax value = " + max);
//Calculates number of classes
int nClasses = (int) ((max- infLimit)/intervalLength)+1;
System.out.println("Number of classes = " + nClasses);
//Calculates interval borders and class markers
//Grouping mode 2: defines inferior limit and length
//of intervals.
double[] classMarkers = new double[nClasses];
double[] Borders = new double[nClasses+2];
Borders[0] = infLimit;
classMarkers[0] = infLimit + intervalLength/2;
for(int j=1; j < nClasses; j++)

classMarkers[j] = classMarkers[j-1] + intervalLength;
for(int j=1; j <= nClasses+1; j++)

Borders[j] = Borders[j-1] + intervalLength;
System.out.println("\nBorders are");
printVector(Borders,nClasses+1);
System.out.println("\nClass markers are");
printVector(classMarkers,nClasses);

double FreqTable[][] = new double[nClasses][2];
System.out.println(
"\nEXTENDED TABLE OF ABSOLUTE FREQUENCIES");
//reuse
FreqTable = group(List, Borders, classMarkers);
meanVarFreqTable(FreqTable);

}

public static void groupM1()
{
//Declaration of data:

245

//observed values as a list
//Example 24 pag 12
double[] List =
{
48.5, 49.2, 51.0, 50.9, 48.7, 50.5, 49.5, 50.8, 50.0, 51.1,
50.7, 51.1, 49.3, 49.1, 50.0, 48.7, 51.2, 49.2, 49.0, 49.3,
49.1, 48.7, 48.6, 49.2, 49.9, 50.1, 50.1, 50.9, 52.4, 50.2,
49.5, 50.9, 51.4, 49.7, 49.8, 50.8, 50.3, 51.8, 50.0, 51.1,
51.3, 50.1, 50.4, 51.1, 49.8, 49.8, 50.1, 50.7, 50.1, 49.9,
49.7, 51.1, 49.7, 49.9, 49.8, 50.5, 49.7, 50.8, 50.7, 50.7,
50.8, 51.5, 51.0
};
System.out.println("\n\n");
System.out.println("FROM DATA LIST TO FREQUENCY TABLE:") ;
printList(List, "Raw data");
//Borders of the intervals
double[] Borders = {48.5, 49.5, 50.5, 51.5, 52.5};
double[] classMarkers = {49, 50, 51, 52};
int nClasses = classMarkers.length;
double[][] FreqTable = new double[nClasses][2];
printList(Borders, "Borders of intervals");
printList(classMarkers, "Class markers");
FreqTable = group(List, Borders, classMarkers);
meanVarFreqTable(FreqTable);
}

public static void groupM2()
{

//Declaration of data:
//observed values as a list
//Example 24 pag 12
double[] List =

{
48.5, 49.2, 51.0, 50.9, 48.7, 50.5, 49.5, 50.8, 50.0, 51.1,
50.7, 51.1, 49.3, 49.1, 50.0, 48.7, 51.2, 49.2, 49.0, 49.3,
49.1, 48.7, 48.6, 49.2, 49.9, 50.1, 50.1, 50.9, 52.4, 50.2,
49.5, 50.9, 51.4, 49.7, 49.8, 50.8, 50.3, 51.8, 50.0, 51.1,

246 ANSWERS TO EXERCISES

51.3, 50.1, 50.4, 51.1, 49.8, 49.8, 50.1, 50.7, 50.1, 49.9,
49.7, 51.1, 49.7, 49.9, 49.8, 50.5, 49.7, 50.8, 50.7, 50.7,
50.8, 51.5, 51.0

};
System.out.println("\n\n");
System.out.println("FROM DATA LIST TO FREQUENCY TABLE:") ;
printList(List, "Raw data");

//Calculate minimal value of data
double min = List[0];
for(int j=1; j < List.length; j++)

if (List[j] < min) min = List[j];
System.out.println("\nMin value = " + min);

double infLimit = min;
//Interval length
double intervalLength = 1;
System.out.println("Inferior limit = " + infLimit);
System.out.println("Interval length = "

+ intervalLength);
group(List, infLimit, intervalLength);

}

//Data is grouped and processed
public static void groupData()
{

//Method 1: all borders and class markers
// are given by hand.
groupM1();
//Method 1: inferior border of first interval and
//the length of intervals are given.
groupM2();

}

// ****************************

247

//Pstricks code
// ****************************

//Produces the pstricks code for the bar graph
//of a frequency table
public static void makeCode(double[][] FreqTable)
{

System.out.println("\nPSTRICKS code for the FreqTable\n ");
int n = FreqTable.length;
//Width of each column
double deltaX = 4;
//The minimum x-coordinate is found
double Minxx = 1000;
for (int i = 0; i < n; i++)

if (FreqTable[i][0] < Minxx)
Minxx = FreqTable[i][0];

int Minxxx = (int) (deltaX * Minxx - deltaX);
//The maximum x-coordinate is found
double Maxx = 0;
for (int i = 0; i < n; i++)

if (FreqTable[i][0] > Maxx)
Maxx = FreqTable[i][0];

int Maxxx = (int) (deltaX * Maxx + deltaX);
//The maximum y-coordinate is found
int Maxyy = 0;
for (int i = 0; i < n; i++)

if (FreqTable[i][1] > Maxyy)
Maxyy = (int) FreqTable[i][1] + 2;

//Starting clause
//x- and y-units.
//The needed space is defined
System.out.println("\\begin{center}" +

"\n\\psset{xunit=0.15,yunit=0.3}" +
"\n\\begin{pspicture}(" + Minxxx +",0)(" +
Maxxx+ "," + Maxyy+")");
//A rectangle is drawn for each entry in the
//frequency table

248 ANSWERS TO EXERCISES

int lim1,lim2;
for (int i = 0; i < n; i++)

{
lim1 = (int) (deltaX * FreqTable[i][0] -deltaX/2);
lim2 = (int) (lim1 + deltaX);
System.out.print(

"\n\\psline("+ lim1 + ",0)" +
"("+lim1 +"," + FreqTable[i][1]+ ")" +
"("+lim2 + ","+ FreqTable[i][1]+ ")" +
"("+lim2 + ","+ "0)"

);
}

//Horizontal axis
System.out.println("\n\\psline(" +

Minxxx +",0)("+ Maxxx + ",0)");

//Class markers (first coordinates) are indicated
for (int i = 0; i < n; i++)

{
int xposition = (int) (deltaX * FreqTable[i][0]);
int yposition = - 1;

System.out.print
(

"\n\\rput * ("+ xposition + "," + yposition+ "){"+
(int) (FreqTable[i][0])+ "}"

);
}

System.out.println();

//Labels for heights (second coordinates) are indicated
for (int i = 0; i < n; i++)

{
int xposition = (int) (deltaX * FreqTable[i][0]);
int yposition = (int) (1+ FreqTable[i][1]);
System.out.print

(
"\n\\rput * ("+ xposition + "," + yposition+ "){" +

(int) (FreqTable[i][1])+ "}"

249

);
}

//End clause
System.out.println("\n\\end{pspicture}");
System.out.println("\\end{center}");
}

public static void codePSTricks()
{

System.out.println("\n\nPSTRICKS CODE FOR A BAR DIAGRAM");
double[][] FreqT =

{{3, 3},
{4, 3},
{5, 2},
{6, 2},
{7, 1},
{8, 1}};

printMatrix(FreqT, "\n\nFREQUENCY TABLE");
makeCode(FreqT);
}

//=== =
// BINOMIAL DISTRIBUTION
//=== =

//The binomial distribution
//for n repeats
//probability of head p,
//amplification factor F.
//Arithmetic trickery in action.
private static double[] binomialDistribution(int n,

double p, double F)
{
double[] pBinomial = new double[n+1];
double[] pBinomialF = new double[n+1];

250 ANSWERS TO EXERCISES

double[] CoefficientsBinomial = new double[n+1];
double biCoeff = 1;
CoefficientsBinomial[0] = biCoeff;
for(int r = 1; r < n+1; r++)
{
biCoeff = biCoeff * (n+1-r) / r;
CoefficientsBinomial[r] = biCoeff;
}
System.out.println("\nCoefficients ");
printVector(CoefficientsBinomial,n+1);
System.out.println("Sum = " +

sumVector(CoefficientsBinomial,n+1));

for(int r = 0; r < n+1; r++)
{
pBinomial[r] = CoefficientsBinomial[r] *

Math.exp(r * Math.log(p) + (n-r) * Math.log(1-p));
}
System.out.println("\nProbabilities for 0,1,2...");
System.out.println("Paste this vector to Excel" +

" and make a graphic");
printVector(pBinomial,n+1);
sumVector(pBinomial,n+1);
System.out.println("Sum = "

+ sumVector(pBinomial,n+1));
for(int k = 0; k < n+1; k++)

pBinomialF[k] = F * pBinomial[k];
System.out.println("\nAbsolute frequencies for F = " + F);
printVector(pBinomialF,n+1);
System.out.println("Sum = " +

sumVector(pBinomialF,n+1));
return pBinomial;
}

//Probability of closed region (extremes included)
private static double pClosedRegion(int limitInf,
int limitMax, double[] pBinomial)
{

double sum =0;

251

for(int r = limitInf; r <= limitMax; r++)
sum = sum + pBinomial[r];

return sum;
}

//Detailed computation of the mean
private static void detailedMean(int n,

double p,
double[] pBinomial)

{
System.out.println("\nDetailed mean: xp(x)");
double sum =0;
double term;
for(int r = 0; r < n+1; r++)
{

term = r * pBinomial[r];
System.out.println(r + " " + term) ;
sum = sum +term;

}
System.out.println("mean = sum xp(x) = " + sum) ;
System.out.println("Expected mean = np = " + n * p) ;

}

//Detailed computation of the variance
private static void detailedVariance(int n,

double p,
double[] pBinomial)

{
System.out.println("\nDetailed variance: " +

"(x-mean) * (-mean) * p(x)");
double sum =0;
double term;
for(int r = 0; r < n+1; r++)
{

term = Math.pow(r- n * p,2) * pBinomial[r];
System.out.println(r + " " + term) ;
sum = sum +term;

}
System.out.println("Variance = " +

252 ANSWERS TO EXERCISES

"sum (x-mean) * (-mean) * p(x) = " + sum) ;
System.out.println(

"Expected var = np(1-p) = " + n * p* (1-p)) ;
System.out.println("Deviation = " + Math.sqrt(sum));

}

//Critical value for significance level alpha, one tail
private static void critical1(double[] pBinomial,

double alpha)
{

int numbTails = 1;
System.out.println("\nLower tail");
double cumulative = 0;
double target = alpha;
int i=-1;
while(cumulative < target)
{

i = i+1;
cumulative = cumulative + pBinomial[i];
System.out.println(i + " cumulative = " + cumulative);

}
System.out.println("To cumulate in the lower tail "

+ target
+ ", \nwe need the first " + i + " Terms.");

System.out.println("The critical value for alpha = "
+ alpha
+ ", numb of tails = " + numbTails
+ "\nin the lower tail is "
+ i+ ". All terms below it are extreme.\n");

System.out.println("Upper tail");
int n = pBinomial.length;
i= n;
cumulative = 0;
while(cumulative < target)

{
i = i-1;
cumulative = cumulative + pBinomial[i];
System.out.println(i + " cumulative = " + cumulative);

253

}

System.out.println("To cumulate in the upper tail "
+ target

+ ", \nwe need term " + i + " and above.");
System.out.println("The critical value for alpha = "

+ alpha
+ ", numb of tails = " + numbTails
+ "\nin the upper tail is "
+ i + ". All terms above it are extreme.\n");

}

//Critical value for significance level alpha, two tails
private static void critical2(double[] pBinomial,

double alpha)
{

critical1(pBinomial,alpha/2);
}

//Main of binomial distribution
private static void binomialDist(int n, double p, int F)
{

double[] pBinomial = new double[n+1];
System.out.println("n= " + n);
System.out.println("p = " + p);
System.out.println("F = " + F);
pBinomial = binomialDistribution(n,p, F);
detailedMean(n,p,pBinomial);
detailedVariance(n,p,pBinomial);
//Probability of a closed region (extremes included)
int limitInf = 2;
int limitMax = 4;
double pR = pClosedRegion(limitInf,limitMax,pBinomial) ;
System.out.println("\nProb of closed region in " +

"within "+ limitInf + " and " + limitMax +
",\nextremes included = " + pR) ;

254 ANSWERS TO EXERCISES

}

//Critical values for a given
//significance level
private static void criticalValues(int n, double p,

double alpha)
{

double[] pBinomial = new double[n+1];
pBinomial = binomialDistribution(n,p, 1);
System.out.println("Binomial distribution: \n" +

" n = " + n + ", p = " + p + ", " +
"significance level = alpha = " + alpha);

System.out.println("\nCRITICAL VALUES");
System.out.println("\nONE TAIL, alpha = " +alpha);
System.out.println("\nTerms and cumulative values");
critical1(pBinomial,alpha);
//critical1(n,p, alpha);
System.out.println("\nTWO TAILS, alpha = " +alpha);
System.out.println("\nTerms and cumulative values");
critical2(pBinomial, alpha);
//critical2(n,p, alpha);

}

//Binomial distribution
public static void binomialDistribution()
{

System.out.println("\n\nBINOMIAL DISTRIBUTION ");
//Example 44 pag 32.
int n= 6;
double p = 0.25;
int F = 35;
//binomialDist(n,p,F);
//Inverse problem: find critical values
double alpha = 0.02;
criticalValues(n,p,alpha);

}

}//End of main class

255

Problems of Chapter 4

66, pag. 60. A given α decrees associated critical values which
define what is normal and what is extreme. So, the probability to
commit an error is α-dependent. The probability of an α error is
precisely α and that of β-error is 1− α.

69, pag. 63. The code that calculates the p-value for the t-
distribution follows. The code includes the number of degrees of
freedom as a global variable because in that way the code conserves
its natural simplicity.

//Program F69 pValueT
//Reports the p- value associated to a given event
//for the t-distribution.
//Combines Simpson’s rule
//with a change of scale to
//swiftly calculate the integral
//under the bell in within 0 and z for any z.
//Style = reuse + global variables.

public class pValueT
{

private static final double pi = 3.14159265358979323846;
private static double dfT;

//Returns numb!
private static long factorial (long numb)

{
if (numb <=1) return 1;

else
return numb * factorial (numb -1);

}

//Returns the double factorial
private static double doubleFact(double x)
{

if (x <=0) return 1;
else

return x * doubleFact(x -2);

256 ANSWERS TO EXERCISES

}

//Returns the Gamma function
private static double Gamma(double x)

{
int xRounded = (int) x;
//System.out.println(x + " " + xRounded);
if (xRounded == x)

return factorial (xRounded-1);
else

{
return Math.sqrt(pi) * doubleFact(2 * xRounded -1) /

Math.pow(2,xRounded);
}

}

//Returns the transformed density function of the
//t distribution with nu d.f.
private static double tFunction(double t, double dfT)

{
double nu = dfT;
double z = t/(1-t * t);
double f = (Gamma((nu+1)/2) /

(Math.sqrt(pi * nu) * Gamma(nu/2))) *
Math.pow(1+z * z/nu, -(nu+1)/2) * (1+ t * t)/((1-t * t) * (1-t * t));
return f;

}

//To use this method for another distribution,
//instead of tFunction(z), write and make a call for your
//new distribution.
private static double f(double xValue)

{
return tFunction(xValue, dfT);

}

257

//Returns the integral under the function f
//in within 0 and z. Precision=1/N.
//Simpson’s rule adapted for reuse.
private static double HalfBodySimpson(double z, long N)

{
double h = z/(2 * N);
long m = N;
double sum = f(0);
for(int j= 1; j<=m; j++)

sum = sum + 4* f((2 * j-1) * h);
for(int j= 1; j<m; j++)

sum = sum + 2* f((2 * j) * h);
sum = sum + f((2 * m) * h);
sum = (h/3) * sum;
return sum;

}

//The area in within zero and z of chosen
//distribution is calculated
//for various degrees of precision.
private static double area(double z)

{
z = (Math.sqrt(1+4 * z* z)-1)/(2 * z);
int N;
double answer;
int i = 3;
N = (int) Math.pow(10, i);
answer = HalfBodySimpson(z,N);
return answer;

}

//Returns Psi(e) = p(x < e)
//the cumulative distribution function of z
private static double psi(double z)
{

return 0.5 + area(z);
}

258 ANSWERS TO EXERCISES

//Returns the p-value(e) = p(x > e)
//the p-value of z
private static double pValue(double z)
{

return 1- psi(z);
}

public static void main(String[] args)
{

System.out.println("\nt-distribution");
//degrees of freedom
dfT = 7;
System.out.println("Degrees of freedom = " + dfT);
double testValue = 1.23456789;
System.out.println("\nTest value = " + testValue);
System.out.print("Simpson’s rule."+
"\nArea = p(0 < x < " + testValue + ") = ");
double area = area(testValue);
System.out.println(area);
double twoAreas = 2 * area;
System.out.println("Two Areas = " + twoAreas);
//psi(e) = p(x < e)
double psi = psi(testValue);
System.out.println("psi(" + testValue + ") " +

"= p(x < " + testValue + ") = " + psi);
double pValue = pValue(testValue);
System.out.println("p-value(" +

testValue + ") = " +
"p(x > " + testValue + ") = " + pValue);

}
}

70, pag. 63. The code that calculates the p-value for the χ2-
distribution follows:

//Program F70 pValueChi2
//Reports the p- value associated to a given event

259

//for the Chi2-distribution.
//Combines Simpson’s rule
//with a change of scale to
//swiftly calculate the integral
//under the bell in within 0 and z for any z.
//Style = reuse + global variables.

public class pValueChi2
{

private static final double pi = 3.14159265358979323846;
private static double dfChi2;

//Returns numb!
private static long factorial (long numb)

{
if (numb <=1) return 1;

else
return numb * factorial (numb -1);

}

//Returns the double factorial
private static double doubleFact(double x)
{

if (x <=0) return 1;
else

return x * doubleFact(x -2);
}

//Returns the Gamma function
private static double Gamma(double x)

{
int xRounded = (int) x;
//System.out.println(x + " " + xRounded);
if (xRounded == x)

return factorial (xRounded-1);
else

{

260 ANSWERS TO EXERCISES

return Math.sqrt(pi) * doubleFact(2 * xRounded -1) /
Math.pow(2,xRounded);

}
}

//Returns the transformed density function of the
//chi2 distribution with nu d.f.
private static double chi2Function(double t, double nu)
{
double z = t/(1-t * t);
double f = (1 /

(Math.pow(2, nu/2) * Gamma(nu/2))) *
Math.exp(-z/2) * Math.pow(z, (nu-2)/2) * (1+ t * t)/((1-t * t) * (1-t
return f;
}

//To use this method for another distribution,
//instead of chi2Function(z), write and make a call for your
//new distribution.
private static double f(double xValue)

{
return chi2Function(xValue, dfChi2);

}

//Returns the integral under the function f
//in within 0 and z. Precision=1/N.
//Simpson’s rule adapted for reuse.
private static double HalfBodySimpson(double z, long N)

{
double h = z/(2 * N);
long m = N;
double sum = f(0);
for(int j= 1; j<=m; j++)

sum = sum + 4* f((2 * j-1) * h);
for(int j= 1; j<m; j++)

sum = sum + 2* f((2 * j) * h);
sum = sum + f((2 * m) * h);

261

sum = (h/3) * sum;
return sum;

}

//The area in within zero and z of chosen
//distribution is calculated
//for various degrees of precision.
private static double area(double z)

{
z = (Math.sqrt(1+4 * z* z)-1)/(2 * z);
int N;
double answer;
int i = 3;
N = (int) Math.pow(10, i);
answer = HalfBodySimpson(z,N);
return answer;

}

//Returns Psi(e) = p(x < e)
//the cumulative distribution function of z
private static double psiPlus(double z)
{

return area(z);
}

//Returns the p-value(e) = p(x > e)
//the p-value of z
private static double pValue(double z)
{

return 1- psiPlus(z);
}

public static void main(String[] args)
{

System.out.println("\nChi2-distribution");
//degrees of freedom
dfChi2 = 7;

262 ANSWERS TO EXERCISES

System.out.println("Degrees of freedom = " + dfChi2);
double testValue = 1.23456789;
System.out.println("\nTest value = " + testValue);
System.out.print("Simpson’s rule."+
"\nArea = p(0 < x < " + testValue + ") = ");
double area = area(testValue);
System.out.println(area);
//psi(e) = p(x < e)
double psi = psiPlus(testValue);
System.out.println("psi(" + testValue + ") " +

"= p(x < " + testValue + ") = " + psi);
double pValue = pValue(testValue);
System.out.println("p-value(" +

testValue + ") = " +
"p(x > " + testValue + ") = " + pValue);

}
}

71, pag. 63. The code that calculates the p-value for the F -
distribution follows:

//Program F71 pValueF
//Reports the p- value associated to a given event
//for the F-distribution.
//Combines Simpson’s rule
//with a change of scale to
//swiftly calculate the integral
//under the bell in within 0 and z for any z.
//Style = reuse + global variables.

public class pValueF
{

private static final double pi = 3.14159265358979323846;
private static double dfFNum, dfFDen;

//Returns numb!
private static long factorial (long numb)

{
if (numb <=1) return 1;

263

else
return numb * factorial (numb -1);

}

//Returns the double factorial
private static double doubleFact(double x)
{

if (x <=0) return 1;
else

return x * doubleFact(x -2);
}

//Returns the Gamma function
private static double Gamma(double x)

{
int xRounded = (int) x;
//System.out.println(x + " " + xRounded);
if (xRounded == x)

return factorial (xRounded-1);
else

{
return Math.sqrt(pi) * doubleFact(2 * xRounded -1) /

Math.pow(2,xRounded);
}

}

//Returns the transformed density function of the
//F distribution with nu1 and nu2 d.f.
private static double FFunction(double t, double nu1, doub le nu2)
{

double z = t/(1-t * t);
double f = (Gamma((nu1+nu2)/2) /

(Gamma(nu1/2) * Gamma(nu2/2))) *
Math.pow(nu1, nu1/2) * Math.pow(nu2, nu2/2) *
Math.pow(z, nu1/2-1) /
Math.pow(nu2+nu1 * z, (nu1+nu2)/2)

264 ANSWERS TO EXERCISES

* (1+ t * t)/((1-t * t) * (1-t * t));
return f;
}

//To use this method for another distribution,
//instead of FFunction(z), write and make a call for your
//new distribution.
private static double f(double xValue)

{
return FFunction(xValue, dfFNum, dfFDen);

}

//Returns the integral under the function f
//in within 0 and z. Precision=1/N.
//Simpson’s rule adapted for reuse.
private static double HalfBodySimpson(double z, long N)

{
double h = z/(2 * N);
long m = N;
double sum = f(0);
for(int j= 1; j<=m; j++)

sum = sum + 4* f((2 * j-1) * h);
for(int j= 1; j<m; j++)

sum = sum + 2* f((2 * j) * h);
sum = sum + f((2 * m) * h);
sum = (h/3) * sum;
return sum;

}

//The area in within zero and z of chosen
//distribution is calculated
//for various degrees of precision.
private static double area(double z)

{
z = (Math.sqrt(1+4 * z* z)-1)/(2 * z);
int N;

265

double answer;
int i = 3;
N = (int) Math.pow(10, i);
answer = HalfBodySimpson(z,N);
return answer;

}

//Returns Psi(e) = p(x < e)
//the cumulative distribution function of z
private static double psiPlus(double z)
{

return area(z);
}

//Returns the p-value(e) = p(x > e)
//the p-value of z
private static double pValue(double z)
{

return 1- psiPlus(z);
}

public static void main(String[] args)
{

System.out.println("\nF-distribution");
//degrees of freedom
dfFNum = 7;
dfFDen = 9;
System.out.println("Degrees of freedom of numerator = "
+ dfFNum);
System.out.println("Degrees of freedom of denominator= "
+ dfFDen);

double testValue = 1.23456789;
System.out.println("\nTest value = " + testValue);
System.out.print("Simpson’s rule."+
"\nArea = p(0 < x < " + testValue + ") = ");
double area = area(testValue);
System.out.println(area);

266 ANSWERS TO EXERCISES

//psi(e) = p(x < e)
double psi = psiPlus(testValue);
System.out.println("psi(" + testValue + ") " +

"= p(x < " + testValue + ") = " + psi);
double pValue = pValue(testValue);
System.out.println("p-value(" +

testValue + ") = " +
"p(x > " + testValue + ") = " + pValue);

}
}

84, pag. 80. The code that calculates p-values for the z, t and
χ2 distributions:

//Program F84 pValues3
//Reports p- value
//for the z, t and chi2 distributions.
//Combines Simpson’s rule
//with a change of scale.
//Code is recast in the language of abstract classes.
//This is evolution to the full:
//one must get powerful but with a complexity that
//is perfect to resolve specific problems.

public class pValues3
{

//Outer class is instantiated
static pValues3 a = new pValues3();

//This is constant pi
private static final double pi = 3.14159265358979323846;

//====== Methods of general use=========

//Returns numb!

267

private static long factorial (long numb)
{

if (numb <=1) return 1;
else

return numb * factorial (numb -1);
}

//Returns the double factorial
private static double doubleFact(double x)
{
if (x <=0) return 1;
else

return x * doubleFact(x -2);
}

//Returns the Gamma function
private static double Gamma(double x)
{

int xRounded = (int) x;
//System.out.println(x + " " + xRounded);
if (xRounded == x)

return factorial (xRounded-1);
else

{
return Math.sqrt(pi) * doubleFact(2 * xRounded -1) /

Math.pow(2,xRounded);
}

}

//======Inner top class with commonalities=========
//The methods that eventually can be useful
//to other distributions come here such as they are.
//The methods that are privative of each distribution
//are defined here as abstract
//and implemented in specific classes below.

268 ANSWERS TO EXERCISES

abstract class pValueAbstract
{

//Degrees of freedom of various distributions
double dfT;
double dfChi2;

//Acquisition of data (abstract declaration)
pValueAbstract(double a, double b)
{

dfT = a;
dfChi2 = b;

}

//The function that defines z is replaced
//by an abstract type. It is not implemented,
//so we can implement other functions too and
//process them with this very same machinery.
abstract double Function(double t);

//To use this method for another distribution,
//instead of Function(z), write and make a call for your
//new distribution.
double f(double xValue)

{
return Function(xValue);

}

//Returns the integral under the function f
//in within 0 and z. Precision=1/N.
//Simpson’s rule adapted for reuse.
double HalfBodySimpson(double z, long N)

{
double h = z/(2 * N);
long m = N;
double sum = f(0);
for(int j= 1; j<=m; j++)

sum = sum + 4* f((2 * j-1) * h);
for(int j= 1; j<m; j++)

269

sum = sum + 2* f((2 * j) * h);
sum = sum + f((2 * m) * h);
sum = (h/3) * sum;
return sum;

}

//The area in within zero and z of chosen
//distribution is calculated
//for various degrees of precision.
double area(double z)

{
z = (Math.sqrt(1+4 * z* z)-1)/(2 * z);
int N;
double answer;
int i = 3;
N = (int) Math.pow(10, i);
answer = HalfBodySimpson(z,N);
return answer;

}

//Returns Psi(e) = p(x < e)
//the cumulative distribution function of e.
//This is abstract because it depends
//on the distribution, it must be
//implemented in the corresponding classes.
abstract double psi(double e);

//Returns the p-value(e) = p(x > e)
//Local implementation of the p-value of e
double pValue(double e)
{

return 1- psi(e);
}

//Local manager
void executor(double testValue)

270 ANSWERS TO EXERCISES

{
System.out.println("\nTest value = " + testValue);
System.out.print("Simpson’s rule."+

"\nArea = p(0 < x < " + testValue + ") = ");
double area = area(testValue);
System.out.println(area);
//psi(e) = p(x < e)
double psi = psi(testValue);
System.out.println("psi(" + testValue + ") " +

"= p(x < " + testValue + ") = " + psi);
double pValue = pValue(testValue);
System.out.println("p-value(" +

testValue + ") = " +
"p(x > " + testValue + ") = " + pValue);

}

}//end of class pValueAbstract

//======Particular classes========

//The z class.
//Definition of the z density function
//and exclusive to it methods.
//It is an specification of the pValueAbstract class.
class pVzClass extends pValueAbstract
{

//Constructor: this is the first thing to do
pVzClass(double dfT, double dfChi2)
{

//Coordination with the top class
super(dfT, dfChi2);
System.out.println("\nz distribution");

}

//Returns Psi(e) = p(x < e)
//the cumulative distribution function of e

271

double psi(double e)
{

return 0.5 + area(e);
}

//Function is implemented here.
//Returns the transformed density function of the
//standardized normal distribution.
double Function(double t)
{

double z = t/(1-t * t);
double f = 1 /Math.pow(2 * pi, 0.5) * Math.exp(-z * z/2) *

(1+ t * t)/((1-t * t) * (1-t * t));
return f;

}

}//end of class pVzClass

//The t class
//Definition of the t density function
//and exclusive to it methods.
//It is an specification of the pValueAbstract class.
class pVtClass extends pValueAbstract
{

//Constructor: this is the first thing to do
pVtClass(double dfT,double dfChi2)
{

//Coordination with the top class
super(dfT,dfChi2);
System.out.println("\nt distribution");
System.out.println("t degrees of freedom = " + dfT);

}

//Returns Psi(e) = p(x < e)
//the cumulative distribution function of e
double psi(double e)
{

272 ANSWERS TO EXERCISES

return 0.5 + area(e);
}

//Function is implemented here.
//Returns the transformed density function of the
//t distribution with dfT d.f.
double Function(double t)
{

double nu = dfT;
double z = t/(1-t * t);
double f = (Gamma((nu+1)/2) /

(Math.sqrt(pi * nu) * Gamma(nu/2))) *
Math.pow(1+z * z/nu, -(nu+1)/2) * (1+ t * t)/((1-t * t) * (1-t * t));
return f;

}

}//end of class pVtClass

//The chi2 class
//Definition of the Chi2 density function
//and exclusive to it methods.
//It is an specification of the pValueAbstract class.
class pVChi2Class extends pValueAbstract
{

//Constructor: this is the first thing to do
pVChi2Class(double dfT,double dfChi2)
{

//Coordination with the top class
super(dfT,dfChi2);
System.out.println("\nChi2 distribution");
System.out.println("Chi2 degrees of freedom = " + dfChi2);

}

//Returns Psi(e) = p(x < e)
//the cumulative distribution function of e
double psi(double e)

273

{
return area(e);

}

//Function is implemented here.
//Returns the transformed density function of the
//chi2 distribution with nu d.f.
double Function(double t)
{

double nu = dfChi2;
double z = t/(1-t * t);
double f = (1 /

(Math.pow(2, nu/2) * Gamma(nu/2)))

* Math.exp(-z/2) * Math.pow(z, (nu-2)/2)

* (1+ t * t)/((1-t * t) * (1-t * t));
return f;

}

}//end of class pVChi2Class

//General manager:
//We use
//the very same instruction
//to process different distributions
//that can be chosen at will.
public static void main(String args[])
{

double testValue = 1.23456789;
//Degrees of freedom of the t distribution
double dfT = 9;
//Degrees of freedom of the chi2 distribution
double dfChi2 = 17;
//Top class is declared
pValueAbstract p;

//Particular class is instantiated
pVzClass z = a.new pVzClass(dfT, dfChi2);

274 ANSWERS TO EXERCISES

//Top class is instructed to take
//the form of the particular class
p = z;
//Asked task is made
p.executor(testValue);

pVtClass t = a.new pVtClass(dfT, dfChi2);
p = t;
p.executor(testValue);

pVChi2Class chi2 = a.new pVChi2Class(dfT, dfChi2);
p = chi2;
p.executor(testValue);

}

}//End of main class

85, pag. 80. The code that calculates p-values for the z, t, χ2

and F distributions:

//Program F85 pValues4
//Reports p- value
//for the z, t, chi2 and F distributions.
//Combines Simpson’s rule
//with a change of scale.
//Code is recast in the language of abstract classes.
//This is evolution to the full:
//one must get powerful but with a complexity that
//is perfect to resolve specific problems.

public class pValues4
{

//Outer class is instantiated
static pValues4 a = new pValues4();

//This is constant pi

275

private static final double pi = 3.14159265358979323846;

//====== Methods of general use=========

//Returns numb!
private static long factorial (long numb)

{
if (numb <=1) return 1;

else
return numb * factorial (numb -1);

}

//Returns the double factorial
private static double doubleFact(double x)
{
if (x <=0) return 1;
else

return x * doubleFact(x -2);
}

//Returns the Gamma function
private static double Gamma(double x)
{

int xRounded = (int) x;
//System.out.println(x + " " + xRounded);
if (xRounded == x)

return factorial (xRounded-1);
else

{
return Math.sqrt(pi) * doubleFact(2 * xRounded -1) /

Math.pow(2,xRounded);
}

}

276 ANSWERS TO EXERCISES

//======Inner top class with commonalities=========
//The methods that eventually can be useful
//to other distributions come here such as they are.
//The methods that are privative of each distribution
//are defined here as abstract
//and implemented in specific classes below.
abstract class pValueAbstract
{

//Degrees of freedom of various distributions
double dfT;
double dfChi2;
double dfFNum;
double dfFDen;

//Acquisition of data (abstract declaration)
pValueAbstract(double a, double b, double c, double d)
{

dfT = a;
dfChi2 = b;
dfFNum = c;
dfFDen = d;

}

//The function that defines z is replaced
//by an abstract type. It is not implemented,
//so we can implement other functions too and
//process them with this very same machinery.
abstract double Function(double t);

//Function might be whatever
double f(double xValue)

{
return Function(xValue);

}

//Returns the integral under the function f
//in within 0 and z. Precision=1/N.

277

//Simpson’s rule adapted for reuse.
double HalfBodySimpson(double z, long N)

{
double h = z/(2 * N);
long m = N;
double sum = f(0);
for(int j= 1; j<=m; j++)

sum = sum + 4* f((2 * j-1) * h);
for(int j= 1; j<m; j++)

sum = sum + 2* f((2 * j) * h);
sum = sum + f((2 * m) * h);
sum = (h/3) * sum;
return sum;

}

//The area in within zero and z of chosen
//distribution is calculated
//for various degrees of precision.
double area(double z)

{
z = (Math.sqrt(1+4 * z* z)-1)/(2 * z);
int N;
double answer;
int i = 3;
N = (int) Math.pow(10, i);
answer = HalfBodySimpson(z,N);
return answer;

}

//Returns Psi(e) = p(x < e)
//the cumulative distribution function of e.
//This is abstract because it depends
//on the distribution, it must be
//implemented in the corresponding classes.
abstract double psi(double e);

//Returns the p-value(e) = p(x > e)

278 ANSWERS TO EXERCISES

//Local implementation of the p-value of e
double pValue(double e)
{

return 1- psi(e);
}

//Local manager
void executor(double testValue)
{

System.out.println("\nTest value = " + testValue);
System.out.print("Simpson’s rule."+

"\nArea = p(0 < x < " + testValue + ") = ");
double area = area(testValue);
System.out.println(area);
//psi(e) = p(x < e)
double psi = psi(testValue);
System.out.println("psi(" + testValue + ") " +

"= p(x < " + testValue + ") = " + psi);
double pValue = pValue(testValue);
System.out.println("p-value(" +

testValue + ") = " +
"p(x > " + testValue + ") = " + pValue);

}

}//end of class pValueAbstract

//======Particular classes========

//The z class.
//Definition of the z density function
//and exclusive to it methods.
//It is an specification of the pValueAbstract class.
class pVzClass extends pValueAbstract
{

//Constructor: this is the first thing to do

279

pVzClass(double dfT, double dfChi2,
double dfFNum, double dfFDen)

{
//Coordination with the top class
super(dfT, dfChi2, dfFNum, dfFDen);
System.out.println("\nz distribution");

}

//Returns Psi(e) = p(x < e)
//the cumulative distribution function of e
double psi(double e)
{

return 0.5 + area(e);
}

//Function is implemented here.
//Returns the transformed density function of the
//standardized normal distribution.
double Function(double t)
{

double z = t/(1-t * t);
double f = 1 /Math.pow(2 * pi, 0.5) * Math.exp(-z * z/2) *

(1+ t * t)/((1-t * t) * (1-t * t));
return f;

}

}//end of class pVzClass

//The t class
//Definition of the t density function
//and exclusive to it methods.
//It is an specification of the pValueAbstract class.
class pVtClass extends pValueAbstract
{

//Constructor: this is the first thing to do
pVtClass(double dfT,double dfChi2,

double dfFNum, double dfFDen)

280 ANSWERS TO EXERCISES

{
//Coordination with the top class
super(dfT,dfChi2, dfFNum, dfFDen);
System.out.println("\nt distribution");
System.out.println("t degrees of freedom = " + dfT);

}

//Returns Psi(e) = p(x < e)
//the cumulative distribution function of e
double psi(double e)
{

return 0.5 + area(e);
}

//Function is implemented here.
//Returns the transformed density function of the
//t distribution with dfT d.f.
double Function(double t)
{

double nu = dfT;
double z = t/(1-t * t);
double f = (Gamma((nu+1)/2) /

(Math.sqrt(pi * nu) * Gamma(nu/2))) *
Math.pow(1+z * z/nu, -(nu+1)/2) * (1+ t * t)/((1-t * t) * (1-t * t));
return f;

}

}//end of class pVtClass

//The chi2 class
//Definition of the Chi2 density function
//and exclusive to it methods.
//It is an specification of the pValueAbstract class.
class pVChi2Class extends pValueAbstract
{

//Constructor: this is the first thing to do

281

pVChi2Class(double dfT,double dfChi2,
double dfFNum, double dfFDen)

{
//Coordination with the top class
super(dfT,dfChi2, dfFNum, dfFDen);
System.out.println("\nChi2 distribution");
System.out.println("Chi2 degrees of freedom = " + dfChi2);

}

//Returns Psi(e) = p(x < e)
//the cumulative distribution function of e
double psi(double e)
{

return area(e);
}

//Function is implemented here.
//Returns the transformed density function of the
//chi2 distribution with nu d.f.
double Function(double t)
{

double nu = dfChi2;
double z = t/(1-t * t);
double f = (1 /

(Math.pow(2, nu/2) * Gamma(nu/2)))

* Math.exp(-z/2) * Math.pow(z, (nu-2)/2)

* (1+ t * t)/((1-t * t) * (1-t * t));
return f;

}

}//end of class pVChi2Class

//The chi2 class
//Definition of the Chi2 density function
//and exclusive to it methods.
//It is an specification of the pValueAbstract class.

282 ANSWERS TO EXERCISES

class pVFClass extends pValueAbstract
{

//Constructor: this is the first thing to do
pVFClass(double dfT,double dfChi2,

double dfFNum, double dfFDen)
{
//Coordination with the top class
super(dfT,dfChi2, dfFNum, dfFDen);
System.out.println("\nF distribution");
System.out.println("F degrees of freedom: "

+ "Num = " + dfFNum
+ ", Den = " + dfFDen);

}

//Returns Psi(e) = p(x < e)
//the cumulative distribution function of e
double psi(double e)
{
return area(e);
}

//Function is implemented here.
//Returns the transformed density function of the
//F distribution with dfFNum and dfFDen d.f.
double Function(double t)
{
double nu1 = dfFNum;
double nu2 = dfFDen;
double z = t/(1-t * t);
double f = (Gamma((nu1+nu2)/2) /

(Gamma(nu1/2) * Gamma(nu2/2))) *
Math.pow(nu1, nu1/2) * Math.pow(nu2, nu2/2) *
Math.pow(z, nu1/2-1) /
Math.pow(nu2+nu1 * z, (nu1+nu2)/2)

* (1+ t * t)/((1-t * t) * (1-t * t));
return f;
}

283

}//end of class pVFClass

//General manager:
//We use
//the very same instruction
//to process different distributions
//that can be chosen at will.
public static void main(String args[])
{

double testValue = 1.23456789;
//Degrees of freedom of the t distribution
double dfT = 9;
//Degrees of freedom of the chi2 distribution
double dfChi2 = 17;
//Degrees of freedom of the F distribution, numerator
double dfFNum = 4;
//Degrees of freedom of the F distribution, denominator
double dfFDen = 32;
//Top class is declared
pValueAbstract p;

//Particular class z is instantiated
pVzClass z = a.new pVzClass(dfT, dfChi2, dfFNum, dfFDen);
//Top class is instructed to take
//the form of the particular class
p = z;
//Asked task is made
p.executor(testValue);
//Particular class t is instantiated
pVtClass t = a.new pVtClass(dfT, dfChi2, dfFNum, dfFDen);
p = t;
p.executor(testValue);
//Particular class chi2 is instantiated
pVChi2Class chi2 =

a.new pVChi2Class(dfT, dfChi2, dfFNum, dfFDen);
p = chi2;
p.executor(testValue);

284 ANSWERS TO EXERCISES

//Particular class F is instantiated
pVFClass f =

a.new pVFClass(dfT, dfChi2, dfFNum, dfFDen);
p = f;
p.executor(testValue);

//Test:
//p-values of 1.23456789 by Gnumeric:
//z: 0.10849568277116
//t: 0.12412629591734
//chi2: 0.99999991994117
//F: 0.31591556865765

}

}//End of main class

91, pag. 94. Critical values of the t- distribution.

//Program F91 critT
//Reports critical values
//for a standardized normal distribution
//and a given significance level.
//Combines Simpson’s rule
//with a change of scale.
//An initial approximation is improved
//by analytical hunting.
//Program is encapsulated in an inner class.
//Style = Entangled OOP.
public class critT
{

//Outer class is instantiated
static critT a = new critT();

//===========Inner class ==========

//Reports critical values
//for the t-distribution

285

class critTInner
{

double pi = 3.14159265358979323846;
double Error;
double jCritic;
double dfT;

//Returns numb!
double factorial (long numb)

{
if (numb <=1) return 1;

else
return numb * factorial (numb -1);

}

//Returns the double factorial
double doubleFact(double x)

{
if (x <=0) return 1;

else
return x * doubleFact(x -2);

}

//Returns the Gamma function
double Gamma(double x)

{
int xRounded = (int) x;
//System.out.println(x + " " + xRounded);
if (xRounded == x)

return factorial (xRounded-1);
else

{
return Math.sqrt(pi) * doubleFact(2 * xRounded -1) /

Math.pow(2,xRounded);
}

286 ANSWERS TO EXERCISES

}

//Returns the transformed density function of the
//t distribution with nu d.f.
//nu is a globally defined variable.
double tFunction(double t)

{
double nu = dfT;
double z = t/(1-t * t);
double f = (Gamma((nu+1)/2) /

(Math.sqrt(pi * nu) * Gamma(nu/2)))

* Math.pow(1+z * z/nu, -(nu+1)/2)

* (1+ t * t)/((1-t * t) * (1-t * t));
return f;

}

//To use this method for another distribution,
//instead of zFunction(z), write and make a call for your
//new distribution.
double f(double z)

{
double f = tFunction(z);
return f;

}

//Reports the transformed upper u-critical for
//the given distribution.
//Significance level = alpha.
//Precision=1/N.
//Simpson’s rule adapted for reuse.
//The error of approximation is also calculated.
double upperU(double h, double target)

{
double r = h/6;
double sum = 0.5;
jCritic = 0;

287

for(int j= 0; sum < target; j++)
{

sum = sum +
r * (f(j * h) + 4 * f((j+0.5) * h) + f((j+1) * h));

jCritic = j+1;
}
jCritic = jCritic-1;
double greatSum = sum -

r * (f(jCritic * h) + 4 * f((jCritic+0.5) * h)
+ f((jCritic+1) * h));

Error = target-greatSum;
double uAprox = (jCritic) * h;
return uAprox;

}

//Returns the transformed value z = u/(1-u * u)
double z(double u)

{
double z = u/(1-u * u);
return z;

}

//The wide of subintervals is defined
double h()
{

double u = 1;
int i=3;
long N = (int) Math.pow(10, i);
double h = u/N;
return h;

}

//Reports the upper z-critical for
//Significance level = alpha.
double vCrit(double target)

{
double h = h();
double uCritic = upperU(h, target);

288 ANSWERS TO EXERCISES

double vCritic = z(uCritic);
return vCritic;

}

//=======Analytical hunting==========

//Returns the density function of the t-distribution
double ff(double z)

{
double nu = dfT;
double f = (Gamma((nu+1)/2) /

(Math.sqrt(pi * nu) * Gamma(nu/2))) *
Math.pow(1+z * z/nu, -(nu+1)/2) ;

return f;
}

// Returns F(a,b) = h(f(a) + 4 * f((a+b)/2) + f(b))-Error;
double F(double a, double b)

{
double h = (b-a)/6;

double Fb = h * (ff(a) + 4 * ff((a+b)/2)
+ ff(b))-Error;

return Fb;
}

//Returns the ratio F(zCritic,gi)/ ff(gi)
double ratio(double zCritic, double gi)

{
double ratio = F(zCritic,gi)/ ff(gi) ;
return ratio;

}

//Critical value for the upper tail.
//A professional approximation is found by
//analytical hunting
double hunting(double zCritic)

289

{
double h = h();
double ur = (jCritic+1) * h;
//Right border of the critical interval
double rBorder = z(ur);
double gSubi = rBorder;
double gSubiPlus= 0;
int iterations = 0;
int maxIterations = 30;
boolean more = true;
while (more)

{
gSubiPlus = gSubi - ratio(zCritic, gSubi);
iterations = iterations +1;
if (iterations >= maxIterations) more = false;
if (gSubiPlus == gSubi) more = false;
gSubi = gSubiPlus;

}
return gSubiPlus;
}

//Critical value for significance level alpha, one tail
double critical(double alpha)
{
double target = 1-alpha;
double zCritic = vCrit(target);
zCritic = hunting(zCritic);
return zCritic;
}

//Local manager
void managerT(double alpha, double df)

{
dfT = df;
System.out.println("\nT distribution");
System.out.println("Critical values for one tail "

+ "\nof the t-distribution with "
+ dfT + " degrees of freedom"

+ "\nAlpha = Significance level = "

290 ANSWERS TO EXERCISES

+ alpha + ".");

System.out.println("critical value = +/-"
+ critical(alpha));

System.out.println("\nCritical values for two tails "
+ "\nof the t-distribution with "
+ dfT + " degrees of freedom"

+ "\nAlpha = Significance level = "
+ alpha + ".");

double alphaHalf = alpha/2;
System.out.println("Critical value = +/-"

+ critical(alphaHalf));
}

}

public static void main(String[] args)
{

//Inner class is instantiated
critTInner t = a.new critTInner();
//Significance level
double alpha = 0.05;
//Degrees of freedom
double df = 7;
//critical t is required
t.managerT(alpha,df);

}
}

92, pag. 94. Critical values of the Chi2 distribution:

//Program F92 critChi2

//Reports critical values
//for a chi-square-distribution
//and a given significance level.
//Combines Simpson’s rule
//with a change of scale.
//An initial approximation is improved
//by analytical hunting.

291

//Program is encapsulated in an inner class.
//Style = Entangled OOP.
public class critChi2
{

//Outer class is instantiated
static critChi2 a = new critChi2();

//===========Inner class ==========

//Reports critical values
//for the t-distribution
public class critChi2Inner
{
double pi = 3.14159265358979323846;
double Error;
double jCritic;
double dfChi2;

//============Style: reuse============

//Returns numb!
double factorial (long numb)
{

if (numb <=1) return 1;
else
return numb * factorial (numb -1);

}

//Returns the double factorial
double doubleFact(double x)
{

if (x <=0) return 1;
else
return x * doubleFact(x -2);

292 ANSWERS TO EXERCISES

}

//Returns the Gamma function
double Gamma(double x)
{

int xRounded = (int) x;
//System.out.println(x + " " + xRounded);
if (xRounded == x)

return factorial (xRounded-1);
else
{

return Math.sqrt(pi) * doubleFact(2 * xRounded -1) /
Math.pow(2,xRounded);

}
}

//===============Style: reuse==================

//Returns the transformed density function of the
//chi-square distribution with nu d.f.
//nu is a globally defined variable.
double chiFunction(double t)
{

double nu = dfChi2;
double z = t/(1-t * t);
double f = (1/(Math.pow(2, nu/2) * Gamma(nu/2)))

* Math.exp(-z/2) * Math.pow(z, (nu-2)/2)

* (1+ t * t)/((1-t * t) * (1-t * t));
return f;

}

//To use this method for another distribution,
//instead of zFunction(z), write and make a call for your

293

//new distribution.
double f(double z)

{
double f = chiFunction(z);
return f;

}

//Reports the transformed upper u-critical for
//the given distribution.
//Significance level = alpha.
//Precision=1/N.
//Simpson’s rule adapted for reuse.
//The error of approximation is also calculated.
//Style = Entangled OOP.
double upperU(double h, double target)
{

double r = h/6;
double sum = 0;
jCritic = 0;
for(int j= 0; sum < target; j++)

{
sum = sum +

r * (f(j * h) + 4 * f((j+0.5) * h) + f((j+1) * h));
jCritic = j+1;

}
jCritic = jCritic-1;
double greatSum = sum -

r * (f(jCritic * h) + 4 * f((jCritic+0.5) * h)
+ f((jCritic+1) * h));

Error = target-greatSum;
double uAprox = (jCritic) * h;
return uAprox;

}

//Returns the transformed value z = u/(1-u * u)
double z(double u)
{

294 ANSWERS TO EXERCISES

double z = u/(1-u * u);
return z;

}

//The wide of subintervals is defined
double h()
{

double u = 1;
int i=3;
long N = (int) Math.pow(10, i);
double h = u/N;
return h;

}

//Reports the upper z-critical for
//Significance level = alpha.
double vCrit(double target)
{

double h = h();
double uCritic = upperU(h, target);
double zCritic = z(uCritic);
return zCritic;

}

//=========Analytical hunting============

//Returns the density function of the chi2-distribution
double ff(double z)
{

double nu = dfChi2;
double f = (1/(Math.pow(2, nu/2) * Gamma(nu/2)))

* Math.exp(-z/2) * Math.pow(z, (nu-2)/2);
return f;

}

// Returns F(a,b) = h(f(a) + 4 * f((a+b)/2) + f(b))-Error;
double F(double a, double b)

295

{
double h = (b-a)/6;

double Fb = h * (ff(a) + 4 * ff((a+b)/2)
+ ff(b))-Error;

return Fb;
}

//Returns the ratio F(zCritic,gi)/ ff(gi)
double ratio(double zCritic, double gi)

{
double ratio = F(zCritic,gi)/ ff(gi) ;
return ratio;

}

//Critical value for the upper tail.
//A professional approximation is found by
//analytical hunting
double hunting(double zCritic)
{
double h = h();
double ur = (jCritic+1) * h;
//Right border of the critical interval
double rBorder = z(ur);
double gSubi = rBorder;
double gSubiPlus= 0;
int iterations = 0;
int maxIterations = 30;
boolean more = true;
while (more)

{
gSubiPlus = gSubi - ratio(zCritic, gSubi);
iterations = iterations +1;
if (iterations >= maxIterations) more = false;
if (gSubiPlus == gSubi) more = false;
gSubi = gSubiPlus;

}
return gSubiPlus;

296 ANSWERS TO EXERCISES

}

//Critical value for significance level alpha, one tail
double critical(double alpha)
{
double target = 1-alpha;
double zCritic = vCrit(target);
zCritic = hunting(zCritic);
return zCritic;
}

//Local manager
void managerChi2(double alpha,double nug)
{

dfChi2 = nug;
System.out.println("\nChi2 distribution"

+ "\ngl = " + dfChi2);

System.out.println("Critical values for one tail "
+ "\nof the chi-square- "

+ "distribution. "

+ "\nAlpha = Significance level = "
+ alpha + ".");

System.out.println("Lower critical value = "
+ critical(1-alpha));

System.out.println("Upper critical value = "
+ critical(alpha));

System.out.println("\nCritical values for two tails "
+ "\nof the chi-square "

+ "distribution."
+ "\nAlpha = Significance level = "
+ alpha + ".");

double alphaHalf = alpha/2;
double Chi2Menos = critical(1-alphaHalf) ;
System.out.println("Lower critical value = "

+ Chi2Menos);

297

double Chi2Mas = critical(alphaHalf) ;
System.out.println("Upper critical value = "

+ Chi2Mas);
}
}

public static void main(String[] args)
{

//Inner class is instantiated
critChi2Inner chi2c = a.new critChi2Inner();
//Significance level
double alpha = 0.05;
//Degrees of freedom
double df = 7;
//critical chi2 is required
chi2c.managerChi2(alpha,df);

}
}

93, pag. 94. The code that calculates critical values for the F

distribution follows:

//Program F93 critF
//Reports critical values
//for the F-distribution
//and a given significance level.
//Combines Simpson’s rule
//with a change of scale.
//An initial approximation is improved
//by analytical hunting.
//Program is encapsulated in an inner class.
//Style = Entangled OOP.
public class critF
{

//Outer class is instantiated

298 ANSWERS TO EXERCISES

static critF a = new critF();

//===========Inner class ==========

//Reports critical values
//for the t-distribution
public class critFInner
{

double pi = 3.14159265358979323846;
double Error;
double jCritic;
double dfFNum, dfFDen;
double k;

// **************** Style: reuse *************

//Returns the beta function with d.f. =
//a(num) and b(den)
double g(double x, double a, double b)
{

double g = Math.pow(x, a -1) *
(Math.pow(1-x, b -1));

return g;
}

//Returns the integral under the function f
//in within 0 and u. Precision=1/N.
//Simpson’s rule adapted for reuse.
//a and b are degrees of freedom
double HalfBodySimpsong(double u,
double a, double b, long N)
{

double h = u/(2 * N);
long m = N;
double sum = g(0,a,b);

299

for(int j= 1; j<=m; j++)
sum = sum + 4* g((2 * j-1) * h,a,b);
for(int j= 1; j<m; j++)
sum = sum + 2* g((2 * j) * h,a,b);
sum = sum + g((2 * m) * h,a,b);
sum = (h/3) * sum;
return sum;

}

//Returns the beta function in integral form
//with a and b d.f.
double beta(double a, double b)
{

double answer;
int i = 4;
int N = (int) Math.pow(10, i);
double u=1;
answer = HalfBodySimpsong(u,a,b,N);
return answer;

}

// **************** F density function *************

//Returns the transformed density function of the
//F distribution with nu1 and nu2 d.f.
double FFunction(double t)
{

double nu1 = dfFNum;
double nu2 = dfFDen;
double z = t/(1-t * t);
double f = k * Math.pow(z, nu1/2-1)

* Math.pow(nu2+nu1 * z, -(nu1+nu2)/2)

* ((1+ t * t)/((1-t * t) * (1-t * t))) ;
//System.out.println(f);
return f;

}

300 ANSWERS TO EXERCISES

//To use this method for another distribution,
//instead of FFunction(z), write and make a call for your
//new distribution.
double f(double z)
{

double f = FFunction(z);
return f;

}

//Reports the transformed upper u-critical for
//the given distribution.
//Significance level = alpha.
//Precision=1/N.
//Simpson’s rule adapted for reuse.
//The error of approximation is also calculated.
double upperU(double h, double target)
{

double nu1 = dfFNum;
double nu2 = dfFDen;
double a = Math.pow(nu1, nu1/2);
double b = Math.pow(nu2, nu2/2);
double c = beta(nu1/2,nu2/2);
k = a * b / c;
double r = h/6;
double sum = 0;
jCritic = 0;
for(int j= 0; sum < target; j++)

{
sum = sum +

r * (f(j * h) + 4 * f((j+0.5) * h) + f((j+1) * h));
jCritic = j+1;

}
jCritic = jCritic-1;
double greatSum = sum -

r * (f(jCritic * h) + 4 * f((jCritic+0.5) * h)
+ f((jCritic+1) * h));

Error = target-greatSum;

301

double uAprox = (jCritic) * h;
return uAprox;

}

//Returns the transformed value z = u/(1-u * u)
double z(double u)
{

double z = u/(1-u * u);
return z;

}

//The wide of subintervals is defined
double h()
{

double u = 1;
int i=3;
long N = (int) Math.pow(10, i);
double h = u/N;
return h;

}

//Reports the upper z-critical for
//Significance level = alpha.
double vCrit(double target)
{

double h = h();
double uCritic = upperU(h, target);
double zCritic = z(uCritic);
return zCritic;

}

// ***** Analytical hunting *******

//Returns the density function of the t-distribution
double ff(double z)
{

double nu1 = dfFNum;
double nu2 = dfFDen;

302 ANSWERS TO EXERCISES

double f = k * Math.pow(z, nu1/2-1)

* Math.pow(nu2+nu1 * z, -(nu1+nu2)/2) ;
return f;

}

// Returns F(a,b) = h(f(a) + 4 * f((a+b)/2) + f(b))-Error;
double F(double a, double b)

{
double h = (b-a)/6;

double Fb = h * (ff(a) + 4 * ff((a+b)/2)
+ ff(b))-Error;

return Fb;
}

//Returns the ratio F(zCritic,gi)/ ff(gi)
double ratio(double zCritic, double gi)

{
double ratio = F(zCritic,gi)/ ff(gi) ;
return ratio;

}

//Critical value for the upper tail.
//A professional approximation is found by
//analytical hunting
double hunting(double zCritic)
{
double h = h();
double ur = (jCritic+1) * h;
//Right border of the critical interval
double rBorder = z(ur);
double gSubi = rBorder;
double gSubiPlus= 0;
int iterations = 0;
int maxIterations = 30;
boolean more = true;
while (more)

303

{
gSubiPlus = gSubi - ratio(zCritic, gSubi);
iterations = iterations +1;
if (iterations >= maxIterations) more = false;
if (gSubiPlus == gSubi) more = false;
gSubi = gSubiPlus;

}
return gSubiPlus;
}

//Critical value for significance level alpha, one tail
double critical(double alpha)
{
double target = 1-alpha;
double zCritic = vCrit(target);
zCritic = hunting(zCritic);
return zCritic;
}

//Local manager
void managerF(double alpha, double nua, double nub)

{
System.out.println("\nF distribution");

dfFNum = nua;
dfFDen = nub;

System.out.println("Critical values for one tail "
+ "\nof the F- "

+ "distribution with dfs "
+ dfFNum + " and " + dfFDen+ ", "
+ "\nAlpha = Significance level = "
+ alpha + ".");

System.out.println("Lower critical value = "
+ critical(1-alpha));
System.out.println("Upper critical value = "
+ critical(alpha));

304 ANSWERS TO EXERCISES

System.out.println("\nCritical values for two tails "
+ "\nof the f "

+ "distribution."
+ "\nAlpha = Significance level = "
+ alpha + ".");
double alphaHalf = alpha/2;

System.out.println("Lower critical value = "
+ critical(1-alphaHalf));
System.out.println("Upper critical value = "
+ critical(alphaHalf));

}
}

public static void main(String[] args)
{

//Inner class is instantiated
critFInner fc = a.new critFInner();
//Significance level
double alpha = 0.05;
//Degrees of freedom numerator
double dfFNum = 7;
//Degrees of freedom denominator
double dfFDen = 17;
//critical F is required
fc.managerF(alpha,dfFNum, dfFDen);

}

}

94, pag. 94. The next program calculates the critical values for
the z, t, Chi2 and F distributions.

//Program F94 criticValues
//Reports critical values
//for the z, t, chi2 and F distributions.

305

//Combines Simpson’s rule
//with a change of scale.
//Code is recast in the language of abstract classes.
//This is evolution to the full:
//one must get powerful but with a complexity that
//is perfect to resolve specific problems.

public class criticValues
{

//Outer class is instantiated
static criticValues a = new criticValues();

//This is constant pi
private static final double pi = 3.14159265358979323846;

//====== Methods of general use=========

//Returns numb!
private static long factorial (long numb)

{
if (numb <=1) return 1;

else
return numb * factorial (numb -1);

}

//Returns the double factorial
private static double doubleFact(double x)
{
if (x <=0) return 1;
else

return x * doubleFact(x -2);
}

//Returns the Gamma function

306 ANSWERS TO EXERCISES

private static double Gamma(double x)
{

int xRounded = (int) x;
//System.out.println(x + " " + xRounded);
if (xRounded == x)

return factorial (xRounded-1);
else

{
return Math.sqrt(pi) * doubleFact(2 * xRounded -1) /

Math.pow(2,xRounded);
}

}

//======Inner top class with commonalities=========
//The methods that eventually can be useful
//to other distributions come here such as they are.
//The methods that are privative of each distribution
//are defined here as abstract
//and implemented in specific classes below.
abstract class crtValueAbstract
{

//Degrees of freedom of various distributions
double dfT;
double dfChi2;
double dfFNum;
double dfFDen;
double sumzero;
double Error;
double jCritic;
double k;

//Constructor
//Acquisition of data (abstract declaration)

crtValueAbstract(double a, double b, double c, double d)
{

dfT = a;
dfChi2 = b;

307

dfFNum = c;
dfFDen = d;

}

// **************** Style: reuse *************

// **************** F density function *************

//Returns the transformed density function of the
//F distribution with nu1 and nu2 d.f.
abstract double Function(double t);

//To use this method for another distribution,
//instead of FFunction(z), write and make a call for your
//new distribution.
double f(double z)
{

double f = Function(z);
return f;

}

//Reports the transformed upper u-critical for
//the given distribution.
//Significance level = alpha.
//Precision=1/N.
//Simpson’s rule adapted for reuse.
//The error of approximation is also calculated.
double upperU(double h, double target)
{

double r = h/6;
jCritic = 0;

308 ANSWERS TO EXERCISES

double sum = sumzero;
for(int j= 0; sum < target; j++)

{
sum = sum +

r * (f(j * h) + 4 * f((j+0.5) * h) + f((j+1) * h));
jCritic = j+1;
}

jCritic = jCritic-1;
double greatSum = sum -

r * (f(jCritic * h) + 4 * f((jCritic+0.5) * h)
+ f((jCritic+1) * h));

Error = target-greatSum;
double uAprox = (jCritic) * h;
return uAprox;
}

//Returns the transformed value z = u/(1-u * u)
double z(double u)
{

double z = u/(1-u * u);
return z;

}

//The wide of subintervals is defined
double h()
{

double u = 1;
int i=3;
long N = (int) Math.pow(10, i);
double h = u/N;
return h;

}

//Reports the upper z-critical for
//Significance level = alpha.
double vCrit(double target)
{

309

double h = h();
//System.out.println("h = " + h);
double uCritic = upperU(h, target);
double zCritic = z(uCritic);
return zCritic;

}

// ***** Analytical hunting *******

//Returns the density function of the distribution
abstract double ff(double z);

// Returns F(a,b) = h(f(a) + 4 * f((a+b)/2) + f(b))-Error;
double F(double a, double b)

{
double h = (b-a)/6;
double Fb = h * (ff(a) + 4 * ff((a+b)/2)

+ ff(b))-Error;
return Fb;

}

//Returns the ratio F(zCritic,gi)/ ff(gi)
double ratio(double zCritic, double gi)

{
double ratio = F(zCritic,gi)/ ff(gi) ;
return ratio;

}

//Critical value for the upper tail.
//A professional approximation is found by
//analytical hunting
double hunting(double zCritic)
{
double h = h();
double ur = (jCritic+1) * h;

310 ANSWERS TO EXERCISES

//Right border of the critical interval
double rBorder = z(ur);
double gSubi = rBorder;
double gSubiPlus= 0;
int iterations = 0;
int maxIterations = 30;
boolean more = true;
while (more)

{
gSubiPlus = gSubi - ratio(zCritic, gSubi);
iterations = iterations +1;
if (iterations >= maxIterations) more = false;
if (gSubiPlus == gSubi) more = false;
gSubi = gSubiPlus;

}
return gSubiPlus;
}

//Critical value for significance level alpha, one tail
double critical(double alpha)
{
double target = 1-alpha;
double vCritic = vCrit(target);
vCritic = hunting(vCritic);
return vCritic;

}

//Local manager
void manager(double alpha)

{
System.out.println("\nAlpha = Significance level = "
+ alpha + ".");

System.out.println("Critical values for ONE TAIL = +/-"
+ critical(alpha));

double alphaHalf = alpha/2;
System.out.println("Critical values for TWO TAILS = +/-"

311

+ critical(alphaHalf));
}

}//end of class crtValueAbstract

//======Particular classes========

//The z class.
//Definition of the z density function
//and exclusive to it methods.
//It is an specification of the crtValueAbstract class.
class criticZClass extends crtValueAbstract
{

//Constructor: this is the first thing to do
criticZClass(double dfT, double dfChi2,

double dfFNum, double dfFDen)
{

//Coordination with the top class
super(dfT, dfChi2, dfFNum, dfFDen);
sumzero = 0.5; //half bell
System.out.println("\nz distribution");

}

//Returns the transformed density function of
//the standardized normal distribution.

double Function(double t)
{

double z = t/(1-t * t);
double f = 1 /Math.pow(2 * pi, 0.5) * Math.exp(-z * z/2) *

(1+ t * t)/((1-t * t) * (1-t * t));
return f;

}

//Returns the density function of the Z distribution
double ff(double z)

{
double f = Math.exp(-z * z/2)/Math.pow(2 * pi, 0.5);

312 ANSWERS TO EXERCISES

return f;
}

}//end of class criticZClass

//The t class
//Definition of the t density function
//and exclusive to it methods.
//It is an specification of the crtValueAbstract class.
class criticTClass extends crtValueAbstract
{

//Constructor: this is the first thing to do
criticTClass(double dfT,double dfChi2,

double dfFNum, double dfFDen)
{

//Coordination with the top class
super(dfT,dfChi2, dfFNum, dfFDen);
sumzero = 0.5; //half bell
System.out.println("\nt distribution");
System.out.println("t degrees of freedom = " + dfT);

}

//Returns the transformed density function of the
//t distribution with nu d.f.
//nu is a globally defined variable.
double Function(double t)
{
double nu = dfT;
double z = t/(1-t * t);
double f = (Gamma((nu+1)/2) /

(Math.sqrt(pi * nu) * Gamma(nu/2)))

* Math.pow(1+z * z/nu, -(nu+1)/2)

* (1+ t * t)/((1-t * t) * (1-t * t));
return f;
}

//Returns the density function of the t-distribution
double ff(double z)

313

{
double nu = dfT;
double f = (Gamma((nu+1)/2) /

(Math.sqrt(pi * nu) * Gamma(nu/2))) *
Math.pow(1+z * z/nu, -(nu+1)/2) ;

return f;
}

}//end of class criticTClass

//The chi2 class
//Definition of the Chi2 density function
//and exclusive to it methods.
//It is an specification of the crtValueAbstract class.
class criticChi2Class extends crtValueAbstract
{

//Constructor: this is the first thing to do
criticChi2Class(double dfT,double dfChi2,

double dfFNum, double dfFDen)
{

//Coordination with the top class
super(dfT,dfChi2, dfFNum, dfFDen);
sumzero = 0; //no negative values
System.out.println("\nChi2 distribution");
System.out.println("Chi2 degrees of freedom = " + dfChi2);

}

//Returns the transformed density function of the
//chi-square distribution with nu d.f.
//nu is a globally defined variable.
double Function(double t)
{
double nu = dfChi2;
double z = t/(1-t * t);
double f = (1/(Math.pow(2, nu/2) * Gamma(nu/2)))

314 ANSWERS TO EXERCISES

* Math.exp(-z/2) * Math.pow(z, (nu-2)/2)

* (1+ t * t)/((1-t * t) * (1-t * t));
return f;
}

//Returns the density function of the chi2-distribution
double ff(double z)
{

double nu = dfChi2;
double f = (1/(Math.pow(2, nu/2) * Gamma(nu/2)))

* Math.exp(-z/2) * Math.pow(z, (nu-2)/2);
return f;

}

//Local manager
void manager(double alpha)
{

System.out.println("Critical values for ONE TAIL "
+ "\nof the chi-square- "

+ "distribution with df = "
+ dfChi2
+ "\nAlpha = Significance level = "
+ alpha + ".");

System.out.println("Lower critical value = "
+ critical(1-alpha));

System.out.println("Upper critical value = "
+ critical(alpha));

System.out.println("\nCritical values for TWO TAILS "
+ "\nof the chi-square "

+ "distribution with df= "
+ dfChi2
+ "\nAlpha = Significance level = "
+ alpha + ".");

double alphaHalf = alpha/2;
double Chi2Menos = critical(1-alphaHalf) ;
System.out.println("Lower critical value = "

315

+ Chi2Menos);
double Chi2Mas = critical(alphaHalf) ;
System.out.println("Upper critical value = "

+ Chi2Mas);
}
}//end of class criticChi2Class

//The F class
//Definition of the F density function
//and exclusive to it methods.
//It is an specification of the crtValueAbstract class.
class criticFClass extends crtValueAbstract
{

//Constructor: this is the first thing to do
criticFClass(double dfT,double dfChi2,

double dfFNum, double dfFDen)
{
//Coordination with the top class
super(dfT,dfChi2, dfFNum, dfFDen);
System.out.println("\nF distribution");
System.out.println("F degrees of freedom: "

+ "Num = " + dfFNum
+ ", Den = " + dfFDen);

}

//Returns the transformed density function of the
//F distribution with dfFNum and dfFDen d.f.
double Function(double t)
{
double nu1 = dfFNum;
double nu2 = dfFDen;
double z = t/(1-t * t);
double f = k * Math.pow(z, nu1/2-1)

* Math.pow(nu2+nu1 * z, -(nu1+nu2)/2)

* ((1+ t * t)/((1-t * t) * (1-t * t))) ;

316 ANSWERS TO EXERCISES

//System.out.println(f);
return f;
}

//Returns a helping function with d.f. =
//a(num) and b(den)
double g(double x, double a, double b)
{
double g = Math.pow(x, a -1) *

(Math.pow(1-x, b -1));
return g;
}

//Returns the integral under the function f
//in within 0 and u. Precision=1/N.
//Simpson’s rule adapted for reuse.
//a and b are degrees of freedom
double HalfBodySimpsong(double u,
double a, double b, long N)
{
double h = u/(2 * N);
long m = N;
double sum = g(0,a,b);
for(int j= 1; j<=m; j++)

sum = sum + 4* g((2 * j-1) * h,a,b);
for(int j= 1; j<m; j++)

sum = sum + 2* g((2 * j) * h,a,b);
sum = sum + g((2 * m) * h,a,b);
sum = (h/3) * sum;
return sum;
}

//Returns the beta function in integral form
//with a and b d.f.
double beta(double a, double b)
{

317

double answer;
int i = 4;
int N = (int) Math.pow(10, i);
double u=1;
answer = HalfBodySimpsong(u,a,b,N);
return answer;
}

//Reports the transformed upper u-critical for
//the given distribution.
//Significance level = alpha.
//Precision=1/N.
//Simpson’s rule adapted for reuse.
//The error of approximation is also calculated.
double upperU(double h, double target)
{
double nu1 = dfFNum;
double nu2 = dfFDen;
double a = Math.pow(nu1, nu1/2);
double b = Math.pow(nu2, nu2/2);
double c = beta(nu1/2,nu2/2);
k = a * b / c;
double r = h/6;
double sum = 0;
jCritic = 0;
for(int j= 0; sum < target; j++)
{

sum = sum +
r * (f(j * h) + 4 * f((j+0.5) * h) + f((j+1) * h));

jCritic = j+1;
}
jCritic = jCritic-1;
double greatSum = sum -

r * (f(jCritic * h) + 4 * f((jCritic+0.5) * h)
+ f((jCritic+1) * h));

Error = target-greatSum;
double uAprox = (jCritic) * h;
return uAprox;

318 ANSWERS TO EXERCISES

}

//Returns the density function of the t-distribution
double ff(double z)
{
double nu1 = dfFNum;
double nu2 = dfFDen;
double f = k * Math.pow(z, nu1/2-1)

* Math.pow(nu2+nu1 * z, -(nu1+nu2)/2) ;
return f;
}

//Local manager
void manager(double alpha)

{
System.out.println("\nF distribution");

System.out.println("Critical values for ONE TAIL "
+ "\nof the F- "

+ "distribution with df: "
+ dfFNum + " and " + dfFDen+ ", "
+ "\nAlpha = Significance level = "
+ alpha + ".");

System.out.println("Lower critical value = "
+ critical(1-alpha));
System.out.println("Upper critical value = "
+ critical(alpha));

System.out.println("\nCritical values for TWO TAILS "
+ "\nof the f "

+ "distribution."
+ "\nAlpha = Significance level = "
+ alpha + ".");
double alphaHalf = alpha/2;

System.out.println("Lower critical value = "
+ critical(1-alphaHalf));
System.out.println("Upper critical value = "

319

+ critical(alphaHalf));
}

}//end of class criticFClass

//General manager:
//We use
//the very same instruction
//to process different distributions
//that can be chosen at will.
public static void main(String args[])
{

double alpha = 0.05;
//Degrees of freedom of the t distribution
double dfT = 7;
//Degrees of freedom of the chi2 distribution
double dfChi2 = 7;
//Degrees of freedom of the F distribution, numerator
double dfFNum = 7;
//Degrees of freedom of the F distribution, denominator
double dfFDen = 17;
//Top class is declared
crtValueAbstract p;

//Particular class z is instantiated
criticZClass zc = a.new criticZClass(dfT, dfChi2, dfFNum, dfFDen);
//Top class is instructed to take
//the form of the particular class
p = zc;
//Asked task is made
p.manager(alpha);
//Particular class t is instantiated
criticTClass tc = a.new criticTClass(dfT, dfChi2, dfFNum, dfFDen);
p = tc;
p.manager(alpha);
//Particular class chi2 is instantiated
criticChi2Class chi2c =

a.new criticChi2Class(dfT, dfChi2, dfFNum, dfFDen);
p = chi2c;

320 ANSWERS TO EXERCISES

p.manager(alpha);
//Particular class F is instantiated
criticFClass fc =

a.new criticFClass(dfT, dfChi2, dfFNum, dfFDen);
p = fc;
p.manager(alpha);

//Answers by Gnumeric for alpha = 0.05
//z = -1.64485362695147
//t = 2.3646242515929
//Chi2 = 14.0671404493402
//f 2.61429904513332
}

}//End of main class

97, pag. 96. Critical and p-values:

//Program F97 values
//Reports critical and p- values
//for the z, t, chi2 and F distributions.
//Combines Simpson’s rule
//with a change of scale.
//Precision is enhanced by analytical hunting.
//Code is recast in the language of abstract classes.
//This is evolution to the full:
//one must get powerful but with a complexity that
//is perfect to resolve specific problems.

public class values
{

//Outer class is instantiated
static values a = new values();

//This is constant pi
private static final double pi = 3.14159265358979323846;

321

//====== Methods of general use=========

//Returns numb!
private static long factorial (long numb)

{
if (numb <=1) return 1;

else
return numb * factorial (numb -1);

}

//Returns the double factorial
private static double doubleFact(double x)
{
if (x <=0) return 1;
else

return x * doubleFact(x -2);
}

//Returns the Gamma function
private static double Gamma(double x)
{

int xRounded = (int) x;
//System.out.println(x + " " + xRounded);
if (xRounded == x)

return factorial (xRounded-1);
else

{
return Math.sqrt(pi) * doubleFact(2 * xRounded -1) /

Math.pow(2,xRounded);
}

}

//======Inner top class with commonalities=========

322 ANSWERS TO EXERCISES

//The methods that eventually can be useful
//to other distributions come here such as they are.
//The methods that are privative of each distribution
//are defined here as abstract
//and implemented in specific classes below.
abstract class ValueAbstract
{

//Degrees of freedom of various distributions
double dfT;
double dfChi2;
double dfFNum;
double dfFDen;
double sumzero;
double Error;
double jCritic;
double k;

//Acquisition of data (abstract declaration)
ValueAbstract(double a, double b, double c, double d)
{

dfT = a;
dfChi2 = b;
dfFNum = c;
dfFDen = d;

}

//The density function is of abstract type.
//It is not implemented,
//so we can implement other functions too and
//process them with this very same machinery.
abstract double f(double t);

//========= p-values==========

//Returns the integral under the function f
//in within 0 and z. Precision=1/N.
//Simpson’s rule adapted for reuse.

323

double HalfBodySimpson(double z, long N)
{

double h = z/(2 * N);
long m = N;
double sum = f(0);
for(int j= 1; j<=m; j++)

sum = sum + 4* f((2 * j-1) * h);
for(int j= 1; j<m; j++)

sum = sum + 2* f((2 * j) * h);
sum = sum + f((2 * m) * h);
sum = (h/3) * sum;
return sum;

}

//The area in within zero and z of chosen
//distribution is calculated
//for various degrees of precision.
double area(double z)

{
z = (Math.sqrt(1+4 * z* z)-1)/(2 * z);
int N;
double answer;
int i = 3;
N = (int) Math.pow(10, i);
answer = HalfBodySimpson(z,N);
return answer;

}

//Returns Psi(e) = p(x < e)
//the cumulative distribution function of e.
//This is abstract because it depends
//on the distribution, it must be
//implemented in the corresponding classes.
double psi(double e)
{
return 0.5 + area(e);
}

324 ANSWERS TO EXERCISES

//Returns the p-value(e) = p(x > e)
//Local implementation of the p-value of e
double pValue(double e)
{

return 1- psi(e);
}

//Local manager
void pExecutor(double testValue)
{

System.out.println("\nTest value = " + testValue);
System.out.print("Simpson’s rule."+

"\nArea = p(0 < x < " + testValue + ") = ");
double area = area(testValue);
System.out.println(area);
//psi(e) = p(x < e)
double psi = psi(testValue);
System.out.println("psi(" + testValue + ") " +

"= p(x < " + testValue + ") = " + psi);
double pValue = pValue(testValue);
System.out.println("p-value(" +

testValue + ") = " +
"p(x > " + testValue + ") = " + pValue);

}

//========Critical values=====

//Reports the transformed upper u-critical for
//the given distribution.
//Significance level = alpha.
//Precision=1/N.
//Simpson’s rule adapted for reuse.
//The error of approximation is also calculated.
double upperU(double h, double target)
{

double r = h/6;
jCritic = 0;

325

double sum = sumzero;
for(int j= 0; sum < target; j++)
{

sum = sum +
r * (f(j * h) + 4 * f((j+0.5) * h) + f((j+1) * h));
jCritic = j+1;

}
jCritic = jCritic-1;
double greatSum = sum -

r * (f(jCritic * h) + 4 * f((jCritic+0.5) * h)
+ f((jCritic+1) * h));

Error = target-greatSum;
double uAprox = (jCritic) * h;
return uAprox;
}

//Returns the transformed value z = u/(1-u * u)
double z(double u)
{
double z = u/(1-u * u);
return z;
}

//The wide of subintervals is defined
double h()
{
double u = 1;
int i=3;
long N = (int) Math.pow(10, i);
double h = u/N;
return h;
}

//Reports the upper z-critical for
//Significance level = alpha.
double vCrit(double target)
{

326 ANSWERS TO EXERCISES

double h = h();
//System.out.println("h = " + h);
double uCritic = upperU(h, target);
double zCritic = z(uCritic);
return zCritic;
}

// ***** Analytical hunting *******

//Returns the density function of the distribution
abstract double ff(double z);

//Returns F(a,b) = h(f(a) + 4 * f((a+b)/2) + f(b))-Error;
double F(double a, double b)
{
double h = (b-a)/6;
double Fb = h * (ff(a) + 4 * ff((a+b)/2)

+ ff(b))-Error;
return Fb;
}

//Returns the ratio F(zCritic,gi)/ ff(gi)
double ratio(double zCritic, double gi)
{
double ratio = F(zCritic,gi)/ ff(gi) ;
return ratio;
}

//Critical value for the upper tail.
//A professional approximation is found by
//analytical hunting
double hunting(double zCritic)
{
double h = h();
double ur = (jCritic+1) * h;

327

//Right border of the critical interval
double rBorder = z(ur);
double gSubi = rBorder;
double gSubiPlus= 0;
int iterations = 0;
int maxIterations = 30;
boolean more = true;
while (more)
{
gSubiPlus = gSubi - ratio(zCritic, gSubi);
iterations = iterations +1;
if (iterations >= maxIterations) more = false;
if (gSubiPlus == gSubi) more = false;
gSubi = gSubiPlus;
}
return gSubiPlus;
}

//Critical value for significance level alpha, one tail
double critical(double alpha)
{
double target = 1-alpha;
double vCritic = vCrit(target);
vCritic = hunting(vCritic);
return vCritic;

}

//Local manager
void critManager(double alpha)
{
System.out.println("\nAlpha = Significance level = "
+ alpha + ".");

System.out.println("Critical values for ONE TAIL = +/-"
+ critical(alpha));

double alphaHalf = alpha/2;
System.out.println("Critical values for TWO TAILS = +/-"

328 ANSWERS TO EXERCISES

+ critical(alphaHalf));
}

}//end of class pValueAbstract

//======Particular classes========

//The z class.
//Definition of the z density function
//and exclusive to it methods.
//It is an specification of the ValueAbstract class.
class VzClass extends ValueAbstract
{

//Constructor: this is the first thing to do
VzClass(double dfT, double dfChi2,

double dfFNum, double dfFDen)
{

//Coordination with the top class
super(dfT, dfChi2, dfFNum, dfFDen);
sumzero = 0.5; //half bell
System.out.println("\n===== z distribution");

}

//Function f is implemented here.
//Returns the transformed density function of the
//standardized normal distribution.
double f(double t)
{

double z = t/(1-t * t);
double f = 1 /Math.pow(2 * pi, 0.5) * Math.exp(-z * z/2) *

(1+ t * t)/((1-t * t) * (1-t * t));
return f;

}

329

//Returns the density function of the Z distribution
double ff(double z)
{

double f = Math.exp(-z * z/2)/Math.pow(2 * pi, 0.5);
return f;

}

}//end of class VzClass

//The t class
//Definition of the t density function
//and exclusive to it methods.
//It is an specification of the ValueAbstract class.
class VtClass extends ValueAbstract
{

//Constructor: this is the first thing to do
VtClass(double dfT,double dfChi2,

double dfFNum, double dfFDen)
{

//Coordination with the top class
super(dfT,dfChi2, dfFNum, dfFDen);
sumzero = 0.5; //half bell
System.out.println("\n===== t distribution");
System.out.println("t degrees of freedom = " + dfT);

}

//Function f is implemented here.
//Returns the transformed density function of the
//t distribution with dfT d.f.
double f(double t)
{

double nu = dfT;
double z = t/(1-t * t);
double f = (Gamma((nu+1)/2) /

(Math.sqrt(pi * nu) * Gamma(nu/2))) *

330 ANSWERS TO EXERCISES

Math.pow(1+z * z/nu, -(nu+1)/2) * (1+ t * t)/((1-t * t) * (1-t * t));
return f;

}

//Returns the density function of the t-distribution
double ff(double z)
{
double nu = dfT;
double f = (Gamma((nu+1)/2) /

(Math.sqrt(pi * nu) * Gamma(nu/2))) *
Math.pow(1+z * z/nu, -(nu+1)/2) ;

return f;
}

}//end of class VtClass

//The chi2 class
//Definition of the Chi2 density function
//and exclusive to it methods.
//It is an specification of the ValueAbstract class.
class VChi2Class extends ValueAbstract
{

//Constructor: this is the first thing to do
VChi2Class(double dfT,double dfChi2,

double dfFNum, double dfFDen)
{

//Coordination with the top class
super(dfT,dfChi2, dfFNum, dfFDen);
sumzero = 0; //no negative values
System.out.println("\n===== Chi2 distribution");
System.out.println("Chi2 degrees of freedom = " + dfChi2);

}

//Returns Psi(e) = p(x < e)
//the cumulative distribution function of e

331

double psi(double e)
{

return area(e);
}

//Function f is implemented here.
//Returns the transformed density function of the
//chi2 distribution with nu d.f.
double f(double t)
{

double nu = dfChi2;
double z = t/(1-t * t);
double f = (1 /

(Math.pow(2, nu/2) * Gamma(nu/2)))

* Math.exp(-z/2) * Math.pow(z, (nu-2)/2)

* (1+ t * t)/((1-t * t) * (1-t * t));
return f;

}

//Returns the density function of the chi2-distribution
double ff(double z)
{
double nu = dfChi2;
double f = (1/(Math.pow(2, nu/2) * Gamma(nu/2)))

* Math.exp(-z/2) * Math.pow(z, (nu-2)/2);
return f;
}

//Local manager
void manager(double alpha)
{
System.out.println("Critical values for ONE TAIL "

+ "\nof the chi-square- "
+ "distribution with df = "
+ dfChi2
+ "\nAlpha = Significance level = "

332 ANSWERS TO EXERCISES

+ alpha + ".");

System.out.println("Lower critical value = "
+ critical(1-alpha));
System.out.println("Upper critical value = "
+ critical(alpha));
System.out.println("\nCritical values for TWO TAILS "

+ "\nof the chi-square "
+ "distribution with df= "
+ dfChi2
+ "\nAlpha = Significance level = "
+ alpha + ".");
double alphaHalf = alpha/2;
double Chi2Menos = critical(1-alphaHalf) ;
System.out.println("Lower critical value = "
+ Chi2Menos);
double Chi2Mas = critical(alphaHalf) ;
System.out.println("Upper critical value = "
+ Chi2Mas);
}
}//end of class pVChi2Class

//The F class
//Definition of the Chi2 density function
//and exclusive to it methods.
//It is an specification of the ValueAbstract class.
class VFClass extends ValueAbstract
{

//Constructor: this is the first thing to do
VFClass(double dfT,double dfChi2,

double dfFNum, double dfFDen)
{
//Coordination with the top class
super(dfT,dfChi2, dfFNum, dfFDen);
sumzero = 0; //no negative values
double nu1 = dfFNum;

333

double nu2 = dfFDen;
double a = Math.pow(nu1, nu1/2);
double b = Math.pow(nu2, nu2/2);
double c = beta(nu1/2,nu2/2);
k = a * b / c;
System.out.println("\n===== F distribution");
System.out.println("F degrees of freedom: "

+ "Num = " + dfFNum
+ ", Den = " + dfFDen);

}

//Returns Psi(e) = p(x < e)
//the cumulative distribution function of e
double psi(double e)
{
return area(e);
}

//Returns the transformed density function of the
//F distribution with dfFNum and dfFDen d.f.
double f(double t)
{
double nu1 = dfFNum;
double nu2 = dfFDen;
double z = t/(1-t * t);
double f = k * Math.pow(z, nu1/2-1)

* Math.pow(nu2+nu1 * z, -(nu1+nu2)/2)

* ((1+ t * t)/((1-t * t) * (1-t * t))) ;
//System.out.println(f);
return f;
}

//Returns a helping function with d.f. =
//a(num) and b(den)
double g(double x, double a, double b)
{

334 ANSWERS TO EXERCISES

double g = Math.pow(x, a -1) *
(Math.pow(1-x, b -1));

return g;
}

//Returns the integral under the function f
//in within 0 and u. Precision=1/N.
//Simpson’s rule adapted for reuse.
//a and b are degrees of freedom
double HalfBodySimpsong(double u,
double a, double b, long N)
{
double h = u/(2 * N);
long m = N;
double sum = g(0,a,b);
for(int j= 1; j<=m; j++)

sum = sum + 4* g((2 * j-1) * h,a,b);
for(int j= 1; j<m; j++)

sum = sum + 2* g((2 * j) * h,a,b);
sum = sum + g((2 * m) * h,a,b);
sum = (h/3) * sum;
return sum;
}

//Returns the beta function in integral form
//with a and b d.f.
double beta(double a, double b)
{
double answer;
int i = 4;
int N = (int) Math.pow(10, i);
double u=1;
answer = HalfBodySimpsong(u,a,b,N);
return answer;
}

335

//Reports the transformed upper u-critical for
//the given distribution.
//Significance level = alpha.
//Precision=1/N.
//Simpson’s rule adapted for reuse.
//The error of approximation is also calculated.
double upperU(double h, double target)
{

double r = h/6;
double sum = 0;
jCritic = 0;
for(int j= 0; sum < target; j++)
{
sum = sum +

r * (f(j * h) + 4 * f((j+0.5) * h) + f((j+1) * h));
jCritic = j+1;
}
jCritic = jCritic-1;
double greatSum = sum -

r * (f(jCritic * h) + 4 * f((jCritic+0.5) * h)
+ f((jCritic+1) * h));

Error = target-greatSum;
double uAprox = (jCritic) * h;
return uAprox;
}

//Returns the density function of the t-distribution
double ff(double z)
{
double nu1 = dfFNum;
double nu2 = dfFDen;
double f = k * Math.pow(z, nu1/2-1)

* Math.pow(nu2+nu1 * z, -(nu1+nu2)/2) ;
return f;
}

//Local manager

336 ANSWERS TO EXERCISES

void manager(double alpha)
{

System.out.println("\nF distribution");
System.out.println("Critical values for ONE TAIL "

+ "\nof the F- "
+ "distribution with df: "
+ dfFNum + " and " + dfFDen+ ", "
+ "\nAlpha = Significance level = "
+ alpha + ".");

System.out.println("Lower critical value = "
+ critical(1-alpha));
System.out.println("Upper critical value = "
+ critical(alpha));

System.out.println("\nCritical values for TWO TAILS "
+ "\nof the f "

+ "distribution."
+ "\nAlpha = Significance level = "
+ alpha + ".");
double alphaHalf = alpha/2;

System.out.println("Lower critical value = "
+ critical(1-alphaHalf));
System.out.println("Upper critical value = "
+ critical(alphaHalf));
}
}//end of class pVFClass

//General manager:
//We use
//the very same instruction
//to process different distributions
//that can be chosen at will.
public static void main(String args[])
{

double testValue = 1.23456789;

337

double alpha = 0.05;
//Degrees of freedom of the t distribution
double dfT = 9;
//Degrees of freedom of the chi2 distribution
double dfChi2 = 17;
//Degrees of freedom of the F distribution, numerator
double dfFNum = 4;
//Degrees of freedom of the F distribution, denominator
double dfFDen = 32;
//Top class is declared
ValueAbstract p;

//Particular class z is instantiated
VzClass z = a.new VzClass(dfT, dfChi2, dfFNum, dfFDen);
//Top class is instructed to take
//the form of the particular class
p = z;
//p-values are calculated
p.pExecutor(testValue);
//Critical values are calculated
p.critManager(alpha);
//Particular class t is instantiated
VtClass t = a.new VtClass(dfT, dfChi2, dfFNum, dfFDen);
p = t;
p.pExecutor(testValue);
p.critManager(alpha);
//Particular class chi2 is instantiated
VChi2Class chi2 =

a.new VChi2Class(dfT, dfChi2, dfFNum, dfFDen);
p = chi2;
p.pExecutor(testValue);
p.critManager(alpha);
//Particular class F is instantiated
VFClass f =

a.new VFClass(dfT, dfChi2, dfFNum, dfFDen);
p = f;
p.pExecutor(testValue);
p.critManager(alpha);

338 ANSWERS TO EXERCISES

//Test:
//p-values of 1.23456789 by Gnumeric:
//z: 0.10849568277116
//t: 0.12412629591734
//chi2: 0.99999991994117
//F: 0.31591556865765

//Critical values by Gnumeric for alpha = 0.05
//z = -1.64485362695147
//t = 2.26215716279837
//Chi2 = 27.5871116382753
//f= 2.66843694251984
}

}//End of main class

Problems of Chapter 5

109, pag. 161. The first version of StatTrek, our toolBox for
statistics, that includes the top 12 experiments follows.

//Program F109 StatTrek1
/ *

StatTrek version 1

This is a tool box of methods specially suited
to support teachers of an elementary course in
statistics. We go along the companion book
Elementary Statistics Vol I version 7 (in Spanish).

The basics of Java can be learned from

Java for the study of evolution
Vol V, the scientific method with Java.
Actually, this program is the response given by
the Author to challenge 349 on page 375

339

of that volume.

Aforementioned material can be down loaded from
www.evoljava.com

License: you are invited to use, reuse and misuse this
software even to make money if only you
can help the formation of a
strong and mature scientific community.

This is a tool box of methods to calculate
a) some statistics of a list of data,
b) the pstricks code for a bar diagram,
c) the binomial distribution and its critical values,
d) the 12 most popular experiments.

How to use this program:

1. Append it to any project and run it.
2. This program is a tool box because its main method

can be filled with any allowed method taken from the
demo.

3. Most relevant allowed methods can be listed in the main
one but only one must be activated, all others must be
muted.

4. To silence one method, append // as a prefix.
To activate a method, delete the prefix //.

5. For a given task, choose the best suited method
among the diverse variants.

6. To run a method with your own data,
modify the inbuilt data according to your needs.
Or much better: make a copy of the needed method,
arrange troubles with duplicated names and modify
the copy.

7. This first version has just one aim:
To implement fundamental tasks as transparently
as possible. So, it looks rather like an array of
independent, non interacting methods.

340 ANSWERS TO EXERCISES

8. To inquire about unknown terms, drag the mouse over
the term and wait until Eclipse displays the
corresponding documentation.

9. To go from the name of a
method to its implementation:

Pose the cursor at the end of the line
with the name of the method and press the space bar,
next press F3: you will be transported to the
implementation of the method.

10. To mark a specific site in the program:
-Activate line numbering.
-Pose the cursor over the line you want to mark.
-Go to the corresponding number at the left margin

of the Editor Window and right click.
-Choose the Add Bookmark menu and punch it.
-A blue marker will appear in the right margin of the

Editor Window. By clicking over it, one can
return to the desired place.
One can also play with the menu
Window -> ShowView -> Outline.
A list with all methods will appear:
click over any one and you will
transported to the corresponding place
along the text of the program.

* /

public class StatTrek1
{

//The outer application is instantiated
private static StatTrek1 a = new StatTrek1();

//This is constant pi
private static final double pi = 3.14159265358979323846;

//Symbolic initialization that can be modified

341

//Significance level
private static double alpha;
//Degrees of freedom of the t distribution
private static double dfT;
//Degrees of freedom of the chi2 distribution
private static double dfChi2;
//Degrees of freedom of the F distribution, numerator
private static double dfFNum;
//Degrees of freedom of the F distribution, denominator
private static double dfFDen ;
private static double k;

//Top abstract class is declared
private static ValueAbstract p;
//Particular class z is instantiated
private static zClass z = a.new zClass();
private static tClass t = a.new tClass();
private static chi2Class chi2 = a.new chi2Class();
private static FClass F = a.new FClass();

//=============================
//MAIN--MAIN--MAIN--MAIN--MAIN
//=============================

public static void main(String[] args)
{

demo();
//meanVarList();
//meanVarFreqTable();
//meanVarCumTable();
//groupData();
//codePSTricks();
//binomialDistribution();
//partitionZ();
//partitionX();

//zTestOneMean();
//zTestTwoMeans();
//tTestOneMean();
//zTestOneProp();

342 ANSWERS TO EXERCISES

//zTestTwoProp();
//chi2TestOneVar();
//FTestTwoVariances();

//Bivariate tests about means
//tTestTwoMeansEqualVar();
//tTestTwoMeansDiffVar();
//tTestFullCompTwoMeans();
//tTestFullCompTwoMeansLists();
//tTestFullCompTwoMeansFT();
//fullCompTwoMeansCF();

//tTestPairedData();

//factorIndependence();
//chi2TestPropHomogeneity();

}

//Demo
public static void demo()

{
meanVarList();
meanVarFreqTable();
meanVarCumTable();
groupData();
codePSTricks();
binomialDistribution();
partitionZ();
partitionX();

zTestOneMean();
zTestTwoMeans();
tTestOneMean();
zTestOneProp();
zTestTwoProp();
chi2TestOneVar();
FTestTwoVariances();

343

//Bivariate tests about means
tTestTwoMeansEqualVar();
tTestTwoMeansDiffVar();
tTestFullCompTwoMeans();
tTestFullCompTwoMeansLists();
tTestFullCompTwoMeansFT();
fullCompTwoMeansCF();

tTestPairedData();

factorIndependence();
chi2TestPropHomogeneity();

}

//==
// IMPLEMENTATIONS
//==

//==
// Methods of general use
//==

//Prints a separator
private static void separator()

{
System.out.println("\n======== * =========\n");

}

//Prints a list and its title
private static void printList(double DataVector[],

String title)
{

System.out.println("\n " + title);
int nData = DataVector.length;
boolean go = true;

344 ANSWERS TO EXERCISES

int nCols = 10;
int nRows = 9;
int counter = 0;
for (int i = 0; (i < nRows) & go; i++)

{
for (int j = 0; (j < nCols) & go; j++)

{
System.out.print(DataVector[i * 10 + j] + " ");
if (counter >= nData-1) go = false;
counter = counter+1;

}
System.out.println();

}
System.out.print("\nNumber of data = " +nData + "\n");

}

//Prints n data in vector
private static void printVector(double Vect[], int n)
{

//System.out.println("Data are");
for (int i = 0; i < n; i++)

System.out.println(i + "\t" + Vect[i]);
}

//Sums data in vector with real numbers
private static double sumVector(double Vect[], int n)
{

double sum = 0;
for (int i = 0; i < n; i++)
sum = sum + Vect[i];
return sum;

}

//Prints a matrix and is title
private static void printMatrix(double Matrix[][],

345

String title)
{

System.out.println(title);
int m = Matrix.length;

for (int i = 0; i < m; i++)
System.out.println(Matrix[i][0]+

"\t "+ Matrix[i][1]);
}

//Documentation is printed
private static void explanation()
{

System.out.println("\nCoeff around 0.01, " +
"homogeneous population." +
"\nCoeff around 0.1, " +
" +/- homogeneous population."+
"\nCoeff around 0.5, " +
" heterogenous population.");

}

//==
// MEAN AND VAR O A LIST OF DATA
//==

//======== Inner class definition=======

//This inner class defines a new type: Table.
//It converts array F (two dimensional) into
//a class or object, ready for reuse.
private class Table
{

//The class Table fundamentally has three elements:
//a matrix with two columns and its length,
//which is the number of rows and
//the titles of columns.

346 ANSWERS TO EXERCISES

int length;
String[] Titles = { "x", "x2 = xˆ2"};
double M[][] = new double[2000][2];

//The input of Table is defined here
//by means of an initialization procedure
//that is called constructor.
//The natural input is the raw data,
//which is consigned in a one dimensional array.
Table(double[] V)
{

length = V.length;
//The matrix M of Table is initialized
//Raw data go in the first column.
//Squares in the second.
for(int i = 0; i < length; i++)
{

M[i][0] = V[i];
M[i][1] = V[i] * V[i];

}
}

//Data of column k are summed.
//The input is a table, the output is of type double.
private double sum(Table T, int k)

{
double sum = 0;
for(int i = 0; i < T.length; i++)

sum = sum + T.M[i][k];
return sum;

}

//Mean of data.
private double mean(Table T)

{
double sumx = T.sum(T,0);
int n = T.length;
double mean = sumx/ n;
return mean;

347

}

//Var of data
private double var(Table T)

{
double sumx = T.sum(T,0);
double sumx2 = T.sum(T,1);
int n = T.length;
double var = (n * sumx2 - sumx * sumx)/ (n * (n-1));
return var;

}

private void printTable(Table T)
{

System.out.printf("%n %10s %11s",
T.Titles [0], T.Titles [1]);

for (int i = 0; i < T.length; i++)
System.out.printf("%n %10.3f %10.3f ",

T.M[i][0], T.M[i][1]);
System.out.println();

}
}//end of inner class

//=== Methods of the outer class ===

//This is the core of the main class
//Here, commands are given to execute the overall task.
private static void meanVarVector(double[] V)
{

//A table is declared
Table T = a.new Table(V);
T.printTable(T);
double sumx = T.sum(T,0);
int n = T.length;
double mean = sumx/ n;
double sumx2 = T.sum(T,1);

348 ANSWERS TO EXERCISES

System.out.printf("%n Sum %6.3f %10.3f ",
sumx, sumx2);

System.out.print("\n \n");
System.out.println("n = number of data = " + n);

System.out.println("\nsumx = " + sumx);
System.out.println("Mean = sumx / n");
System.out.println("Mean = " + mean);
System.out.println("sumx2 = " + sumx2);
System.out.println("variance = " +

"(n * sumx2 - sumx * sumx)/ (n * (n-1))");
double var = (n * sumx2 - sumx * sumx)/ (n * (n-1));
System.out.println("Variance = "+ var);
double deviation = Math.pow(var, 0.5);
System.out.println("Deviation = "+ deviation);
double coeffVar = deviation/mean;
System.out.println("Coefficient of variation " +

"= deviation/mean");
System.out.println("Coefficient of variation = "

+ coeffVar);
explanation();

}

//A list of data is processed
private static void meanVarList()
{

System.out.println("\n\n");
System.out.println("MEAN AND VAR OF A LIST OF DATA");
//Example 19 page 9.
double List[] = {5, 3, 4.5, 2};
//Prints list and title
printList(List, "Raw data");
System.out.println("\nTABLE WITH x AND ITS SQUARE");
meanVarVector(List);
separator();

}

//=== =
// MEAN AND VAR OF A TABLE OF ABSOLUTE FREQUENCIES

349

//=== =

//======== Inner class definition=======

//This inner class defines a new type: Table.
//It converts array F (two dimensional) into
//a class or object, ready for reuse.
private class FreqTable

{
//The class Table has two main elements:
//1) The titles of the columns, whose length
//gives the number of columns.
//2) A matrix, whose length is the number of rows.

String[] Titles = { "x", "F", "xF", "x2F"};
double M[][] = new double[2000][Titles.length];
int nRows;
//The input of Table is defined here
//by means of an initialization procedure
//that is called constructor.
//The natural input is the frequency table
//which is consigned in a matrix FT with 2 columns.
FreqTable(double FT[][])

{
nRows = FT.length;
//The matrix M of Table is initialized
//Raw data go in columns 0 and 1.
//Squares in the second.
for(int i = 0; i < nRows; i++)
{

M[i][0] = FT[i][0];
M[i][1] = FT[i][1];
M[i][2] = M[i][0] * M[i][1];
M[i][3] = M[i][0] * M[i][2];

}
}

//Data of column k are summed.

350 ANSWERS TO EXERCISES

//The input is a table, the output is of type double.
private double sum(FreqTable T, int k)

{
double sum = 0;
for(int i = 0; i < T.nRows; i++)
sum = sum + T.M[i][k];
return sum;

}

//Mean of data.
private double mean(FreqTable T)

{
double n = T.sum(T,1);
double sumxF = T.sum(T,2);
double mean = sumxF/ n;
return mean;

}

//Var of data
private double var(FreqTable T)

{
double n = T.sum(T,1);
double sumxF = T.sum(T,2);
double sumx2F = T.sum(T,3);
double Sxx = sumx2F - Math.pow(sumxF, 2)/n;
double var = Sxx / (n-1);
return var;

}

private void printTable(FreqTable T)
{

System.out.println("\nExtended matrix to " +
"calculate variance:");

System.out.printf("%n %10s %10s %10s %10s",
T.Titles [0], T.Titles [1],

T.Titles [2],T.Titles [3]);
for (int i = 0; i < T.nRows; i++)

System.out.printf(

351

"%n %10.3f %10.3f %10.3f %10.3f ",
T.M[i][0], T.M[i][1], T.M[i][2], T.M[i][3]);

System.out.println();
}

}//end of inner class

//=== Methods of the outer class ===

// Mean and variance of a frequency table
private static void meanVarFreqTable(double FreqTable[] [])
{

//A table is declared
FreqTable T = a.new FreqTable(FreqTable);
T.printTable(T);
double n = T.sum(T,1);
double sumxF = T.sum(T,2);
double sumx2F = T.sum(T,3);
System.out.printf("Sum %18.3f %10.3f %10.3f ",

n, sumxF, sumx2F);
double mean = sumxF/ n;
System.out.print(

"\n\n n = Number of objects = sum F = "+ (int) n);
System.out.printf("\n sum xF = %10.3f ", sumxF);
System.out.printf("\n sum x2F = %10.3f ", sumx2F);
System.out.printf("\n Mean = sum xF / n = %10.3f ", mean);
double Sxx = sumx2F - Math.pow(sumxF, 2)/n;
System.out.printf(
"\n Sxx = sum x2F - (sumxF)ˆ2 /n = %10.3f ", Sxx);
double var = Sxx / (n-1);
System.out.printf(
"\n Variance = Sxx/(n-1) = %10.3f ", var);
double deviation = Math.sqrt(var);
System.out.printf(
"\n Deviation = %10.3f ", deviation);
double c = deviation/ mean;
System.out.printf(

"\n Coefficient of variation = %10.3f \n", c);

352 ANSWERS TO EXERCISES

explanation();
}

//A Frequency Table is processed
private static void meanVarFreqTable()
{

System.out.println("\n\n");
System.out.println("\n\nMEAN-VAR OF A FREQUENCY TABLE") ;
//Frequency table: first coordinate = class marker
//second coordinate = frequency

//Example 20, pag 10
double FreqT[][] =

{{4, 3},
{7, 6},
{10, 10},
{13, 15},
{16, 4},
{19, 2}};

printMatrix(FreqT, "\n Raw data");
meanVarFreqTable(FreqT);
separator();

}

//=== =
//MEAN AND VAR OF A TABLE OF CUMULATIVE FREQUENCIES
//=== =

private static void meanVarCumTable(double[][] cumFreqT)
{

printMatrix(cumFreqT, "\n Raw data");
//Absolute frequencies are calculated
//and kept in FreqT, a matrix with two columns.
double FreqT[][] = new double[cumFreqT.length][2];

353

FreqT[0] = cumFreqT[0];
int lx = cumFreqT.length;
for(int i = 1; i < lx; i++)
{

FreqT[i][0] = cumFreqT[i][0];
FreqT[i][1] = cumFreqT[i][1]-cumFreqT[i-1][1];

}
System.out.println("\n\n");
System.out.println(
"\n MEAN-VAR OF ASSOCIATED FREQUENCY TABLE");

meanVarFreqTable(FreqT);//reuse
}

//A cumulative frequency table is processed
public static void meanVarCumTable()
{

System.out.println(
"MEAN-VAR OF A CUMULATIVE FREQUENCY TABLE");
//Cumulative table: first coordinate = class marker
//second coordinate = cumulative frequency

//Problem 1 of version 1, pag 42.
double cumFreqT[][] =

{{32,7},
{40,12},
{45,17},
{50,45},
{55,52},
{60,58}};

meanVarCumTable(cumFreqT);
separator();

}

//=== =
// GROUPING OF DATA IN INTERVALS + MEAN & VAR
//=== =

354 ANSWERS TO EXERCISES

//List is the input, a frequency table is the output
private static double[][] group(double List[],

double Borders[], double classMarkers[])
{

int nClasses = classMarkers.length;
double FreqTable[][] = new double[nClasses][2];
int nData = List.length;

for(int j=0; j < nClasses; j++)
{

FreqTable[j][0] = classMarkers[j];
FreqTable[j][1] = 0;

}
for(int i=0; i< nData; i++)

{
for(int j=0; j < nClasses; j++)

{
if((Borders[j] <= List[i]) & (List[i] < Borders[j+1]))
FreqTable[j][1] =FreqTable[j][1] +1;

}

}

return FreqTable;
}

//Data is grouped into a frequency table.
//The borders and class marker of each interval
//is calculated.
//Final output = Mean and var of the freq table.
private static void group(double List[],
double infLimit, double intervalLength)
{

//Calculate minimal value of data

355

double min = List[0];
for(int j=1; j < List.length; j++)

if (List[j] < min) min = List[j];
//Calculate maximal value of data
double max = List[0];
for(int j=1; j < List.length; j++)

if (List[j] > max) max = List[j];
System.out.println("\nMax value = " + max);
//Calculates number of classes
int nClasses = (int) ((max- infLimit)/intervalLength)+1;
System.out.println("Number of classes = " + nClasses);
//Calculates interval borders and class markers
//Grouping mode 2: defines inferior limit and length
//of intervals.
double classMarkers[] = new double[nClasses];
double Borders[] = new double[nClasses+2];
Borders[0] = infLimit;
classMarkers[0] = infLimit + intervalLength/2;
for(int j=1; j < nClasses; j++)

classMarkers[j] = classMarkers[j-1] + intervalLength;
for(int j=1; j <= nClasses+1; j++)

Borders[j] = Borders[j-1] + intervalLength;
System.out.println("\nBorders are");
printVector(Borders,nClasses+1);
System.out.println("\nClass markers are");
printVector(classMarkers,nClasses);

double FreqTable[][] = new double[nClasses][2];
System.out.println(
"\nEXTENDED TABLE OF ABSOLUTE FREQUENCIES");
//reuse
FreqTable = group(List, Borders, classMarkers);
meanVarFreqTable(FreqTable);

}

public static void groupM1()
{
//Declaration of data:
//observed values as a list

356 ANSWERS TO EXERCISES

//Example 24 pag 12
double List[] =
{
48.5, 49.2, 51.0, 50.9, 48.7, 50.5, 49.5, 50.8, 50.0, 51.1,
50.7, 51.1, 49.3, 49.1, 50.0, 48.7, 51.2, 49.2, 49.0, 49.3,
49.1, 48.7, 48.6, 49.2, 49.9, 50.1, 50.1, 50.9, 52.4, 50.2,
49.5, 50.9, 51.4, 49.7, 49.8, 50.8, 50.3, 51.8, 50.0, 51.1,
51.3, 50.1, 50.4, 51.1, 49.8, 49.8, 50.1, 50.7, 50.1, 49.9,
49.7, 51.1, 49.7, 49.9, 49.8, 50.5, 49.7, 50.8, 50.7, 50.7,
50.8, 51.5, 51.0
};

System.out.println("\n\n");
System.out.println("FROM DATA LIST TO FREQUENCY TABLE:") ;
printList(List, "Raw data");
//Borders of the intervals
double Borders[] = {48.5, 49.5, 50.5, 51.5, 52.5};
double classMarkers[] = {49, 50, 51, 52};
int nClasses = classMarkers.length;
double FreqTable[][] = new double[nClasses][2];
printList(Borders, "Borders of intervals");
printList(classMarkers, "Class markers");
FreqTable = group(List, Borders, classMarkers);
meanVarFreqTable(FreqTable);

}

public static void groupM2()
{

//Declaration of data:
//observed values as a list
//Example 24 pag 12
double List[] =

{
48.5, 49.2, 51.0, 50.9, 48.7, 50.5, 49.5, 50.8, 50.0, 51.1,
50.7, 51.1, 49.3, 49.1, 50.0, 48.7, 51.2, 49.2, 49.0, 49.3,
49.1, 48.7, 48.6, 49.2, 49.9, 50.1, 50.1, 50.9, 52.4, 50.2,
49.5, 50.9, 51.4, 49.7, 49.8, 50.8, 50.3, 51.8, 50.0, 51.1,
51.3, 50.1, 50.4, 51.1, 49.8, 49.8, 50.1, 50.7, 50.1, 49.9,

357

49.7, 51.1, 49.7, 49.9, 49.8, 50.5, 49.7, 50.8, 50.7, 50.7,
50.8, 51.5, 51.0

};
System.out.println("\n\n");
System.out.println("FROM DATA LIST TO FREQUENCY TABLE:") ;
printList(List, "Raw data");

//Calculate minimal value of data
double min = List[0];
for(int j=1; j < List.length; j++)

if (List[j] < min) min = List[j];
System.out.println("\nMin value = " + min);

double infLimit = min;
//Interval length
double intervalLength = 1;
System.out.println("Inferior limit = " + infLimit);
System.out.println("Interval length = "

+ intervalLength);
group(List, infLimit, intervalLength);

}

//Data is grouped and processed
public static void groupData()
{

//Method 1: all borders and class markers
// are given by hand.
groupM1();
//Method 1: inferior border of first interval and
//the length of intervals are given.
groupM2();
separator();

}

// ****************************

358 ANSWERS TO EXERCISES

//Pstricks code
// ****************************

//Produces the pstricks code for the bar graph
//of a frequency table
public static void makeCode(double FreqTable[][])
{

System.out.println("\nPSTRICKS code for the FreqTable\n ");
int n = FreqTable.length;
//Width of each column
double deltaX = 4;
//The minimum x-coordinate is found
double Minxx = 1000;
for (int i = 0; i < n; i++)

if (FreqTable[i][0] < Minxx)
Minxx = FreqTable[i][0];

int Minxxx = (int) (deltaX * Minxx - deltaX);
//The maximum x-coordinate is found
double Maxx = 0;
for (int i = 0; i < n; i++)

if (FreqTable[i][0] > Maxx)
Maxx = FreqTable[i][0];

int Maxxx = (int) (deltaX * Maxx + deltaX);
//The maximum y-coordinate is found
int Maxyy = 0;
for (int i = 0; i < n; i++)

if (FreqTable[i][1] > Maxyy)
Maxyy = (int) FreqTable[i][1] + 2;

//Starting clause
//x- and y-units.
//The needed space is defined
System.out.println("\\begin{center}" +

"\n\\psset{xunit=0.15,yunit=0.3}" +
"\n\\begin{pspicture}(" + Minxxx +",0)(" +
Maxxx+ "," + Maxyy+")");
//A rectangle is drawn for each entry in the
//frequency table

359

int lim1,lim2;
for (int i = 0; i < n; i++)

{
lim1 = (int) (deltaX * FreqTable[i][0] -deltaX/2);
lim2 = (int) (lim1 + deltaX);
System.out.print(

"\n\\psline("+ lim1 + ",0)" +
"("+lim1 +"," + FreqTable[i][1]+ ")" +
"("+lim2 + ","+ FreqTable[i][1]+ ")" +
"("+lim2 + ","+ "0)"

);
}

//Horizontal axis
System.out.println("\n\\psline(" +

Minxxx +",0)("+ Maxxx + ",0)");

//Class markers (first coordinates) are indicated
for (int i = 0; i < n; i++)

{
int xposition = (int) (deltaX * FreqTable[i][0]);
int yposition = - 1;

System.out.print
(

"\n\\rput * ("+ xposition + "," + yposition+ "){"+
(int) (FreqTable[i][0])+ "}"

);
}

System.out.println();

//Labels for heights (second coordinates) are indicated
for (int i = 0; i < n; i++)

{
int xposition = (int) (deltaX * FreqTable[i][0]);
int yposition = (int) (1+ FreqTable[i][1]);
System.out.print

(
"\n\\rput * ("+ xposition + "," + yposition+ "){" +

(int) (FreqTable[i][1])+ "}"

360 ANSWERS TO EXERCISES

);
}

//End clause
System.out.println("\n\\end{pspicture}");
System.out.println("\\end{center}");
}

public static void codePSTricks()
{

System.out.println("\n\nPSTRICKS CODE FOR A BAR DIAGRAM");
double FreqT[][] =

{{3, 3},
{4, 3},
{5, 2},
{6, 2},
{7, 1},
{8, 1}};

printMatrix(FreqT, "\n\nFREQUENCY TABLE");
makeCode(FreqT);
separator();
}

//=== =
// BINOMIAL DISTRIBUTION
//=== =

//The binomial distribution
//for n repeats
//probability of head p,
//amplification factor F.
//Arithmetic trickery in action.
private static double[] binomialDistribution(int n,

double p, double F)
{

double pBinomial[] = new double[n+1];

361

double pBinomialF[] = new double[n+1];
double CoefficientsBinomial[] = new double[n+1];
double biCoeff = 1;
CoefficientsBinomial[0] = biCoeff;
for(int r = 1; r < n+1; r++)

{
biCoeff = biCoeff * (n+1-r) / r;
CoefficientsBinomial[r] = biCoeff;

}
System.out.println("\nCoefficients ");
printVector(CoefficientsBinomial,n+1);
System.out.println("Sum = " +

sumVector(CoefficientsBinomial,n+1));

for(int r = 0; r < n+1; r++)
{

pBinomial[r] = CoefficientsBinomial[r] *
Math.exp(r * Math.log(p) + (n-r) * Math.log(1-p));

}
System.out.println("\nProbabilities for 0,1,2...");
System.out.println("Paste this vector to Excel" +

" and make a graphic");
printVector(pBinomial,n+1);
sumVector(pBinomial,n+1);
System.out.println("Sum = "

+ sumVector(pBinomial,n+1));
for(int k = 0; k < n+1; k++)
pBinomialF[k] = F * pBinomial[k];
System.out.println("\nAbsolute frequencies for F = " + F);
printVector(pBinomialF,n+1);
System.out.println("Sum = " +

sumVector(pBinomialF,n+1));
return pBinomial;

}

//Probability of closed region (extremes included)
private static double pClosedRegion(int limitInf,

int limitMax,
double[] pBinomial)

362 ANSWERS TO EXERCISES

{
double sum =0;
for(int r = limitInf; r <= limitMax; r++)

sum = sum + pBinomial[r];
return sum;

}

//Detailed computation of the mean
private static void detailedMean(int n,

double p,
double[] pBinomial)

{
System.out.println("\nDetailed mean: xp(x)");
double sum =0;
double term;
for(int r = 0; r < n+1; r++)
{

term = r * pBinomial[r];
System.out.println(r + " " + term) ;
sum = sum +term;

}
System.out.println("mean = sum xp(x) = " + sum) ;
System.out.println("Expected mean = np = " + n * p) ;

}

//Detailed computation of the variance
private static void detailedVariance(int n,

double p,
double[] pBinomial)

{
System.out.println("\nDetailed variance: " +

"(x-mean) * (-mean) * p(x)");
double sum =0;
double term;
for(int r = 0; r < n+1; r++)
{

term = Math.pow(r- n * p,2) * pBinomial[r];
System.out.println(r + " " + term) ;
sum = sum +term;

363

}
System.out.println("Variance = " +

"sum (x-mean) * (-mean) * p(x) = " + sum) ;
System.out.println(

"Expected var = np(1-p) = " + n * p* (1-p)) ;
System.out.println("Deviation = " + Math.sqrt(sum));

}

//Critical value for significance level alpha, one tail
private static void critical1(double[] pBinomial,

double alpha)
{

int numbTails = 1;
System.out.println("\nLower tail");
double cumulative = 0;
double target = alpha;
int i=-1;
while(cumulative < target)
{

i = i+1;
cumulative = cumulative + pBinomial[i];
System.out.println(i + " cumulative = " + cumulative);

}
System.out.println("To cumulate in the lower tail "

+ target
+ ", \nwe need the first " + i + " Terms.");

System.out.println("The critical value for alpha = "
+ alpha
+ ", numb of tails = " + numbTails
+ "\nin the lower tail is "
+ i+ ". All terms below it are extreme.\n");

System.out.println("Upper tail");
int n = pBinomial.length;
i= n;
cumulative = 0;
while(cumulative < target)

{
i = i-1;

364 ANSWERS TO EXERCISES

cumulative = cumulative + pBinomial[i];
System.out.println(i + " cumulative = " + cumulative);

}

System.out.println("To cumulate in the upper tail "
+ target

+ ", \nwe need term " + i + " and above.");
System.out.println("The critical value for alpha = "

+ alpha
+ ", numb of tails = " + numbTails
+ "\nin the upper tail is "
+ i + ". All terms above it are extreme.\n");

}

//Critical value for significance level alpha, two tails
private static void critical2(double[] pBinomial,

double alpha)
{

critical1(pBinomial,alpha/2);
}

//Main of binomial distribution
private static void binomialDist(int n, double p, int F)
{

double pBinomial[] = new double[n+1];
System.out.println("n= " + n);
System.out.println("p = " + p);
System.out.println("F = " + F);
pBinomial = binomialDistribution(n,p, F);
detailedMean(n,p,pBinomial);
detailedVariance(n,p,pBinomial);
//Probability of a closed region (extremes included)
int limitInf = 2;
int limitMax = 4;
double pR = pClosedRegion(limitInf,limitMax,pBinomial) ;
System.out.println("\nProb of closed region in " +

"within "+ limitInf + " and " + limitMax +

365

",\nextremes included = " + pR) ;

}

//Critical values for a given
//significance level
private static void criticalValues(int n, double p,

double alpha)
{

double pBinomial[] = new double[n+1];
pBinomial = binomialDistribution(n,p, 1);
System.out.println("Binomial distribution: \n" +

" n = " + n + ", p = " + p + ", " +
"significance level = alpha = " + alpha);

System.out.println("\nCRITICAL VALUES");
System.out.println("\nONE TAIL, alpha = " +alpha);
System.out.println("\nTerms and cumulative values");
critical1(pBinomial,alpha);
//critical1(n,p, alpha);
System.out.println("\nTWO TAILS, alpha = " +alpha);
System.out.println("\nTerms and cumulative values");
critical2(pBinomial, alpha);
//critical2(n,p, alpha);

}

//Binomial distribution
public static void binomialDistribution()
{

System.out.println("\n\nBINOMIAL DISTRIBUTION ");
//Example 44 pag 32.
int n= 6;
double p = 0.25;
//int F = 35;
//binomialDist(n,p,F);
//Inverse problem: find critical values
double alpha = 0.02;
criticalValues(n,p,alpha);
separator();

}

366 ANSWERS TO EXERCISES

//=== =
// THE TOP 12 TESTS
//=== =

//====== Methods of general use=========

//Returns numb!
private static long factorial (long numb)
{

if (numb <=1) return 1;
else

return numb * factorial (numb -1);
}

//Returns the double factorial
private static double doubleFact(double x)
{

if (x <=0) return 1;
else

return x * doubleFact(x -2);
}

//Returns the Gamma function
private static double Gamma(double x)
{

int xRounded = (int) x;
//System.out.println(x + " " + xRounded);
if (xRounded == x)

return factorial (xRounded-1);
else
{
return Math.sqrt(pi) * doubleFact(2 * xRounded -1) /

367

Math.pow(2,xRounded);
}

}

//======Inner top class that calculates==========
//===========critical and p-values ==============

//The methods that eventually can be useful
//to all distributions come here such as they are.
//The methods that are privative of each distribution
//are defined here as abstract
//and implemented in specific classes below.
abstract class ValueAbstract
{
double sumzero;
double Error;
double jCritic;

//The density function is of abstract type.
//It is not implemented,
//so we can implement other functions too and
//process them with this very same machinery.
abstract double f(double t);

//========= p-values==========

//Returns the integral under the function f
//in within 0 and z. Precision=1/N.
//Simpson’s rule adapted for reuse.
double HalfBodySimpson(double z, long N)
{

double h = z/(2 * N);

368 ANSWERS TO EXERCISES

long m = N;
double sum = f(0);
for(int j= 1; j<=m; j++)
sum = sum + 4* f((2 * j-1) * h);
for(int j= 1; j<m; j++)
sum = sum + 2* f((2 * j) * h);
sum = sum + f((2 * m) * h);
sum = (h/3) * sum;
return sum;

}

//The area in within zero and z of chosen
//distribution is calculated
//for various degrees of precision.
double area(double z)
{

z = (Math.sqrt(1+4 * z* z)-1)/(2 * z);
int N;
double answer;
int i = 3;
N = (int) Math.pow(10, i);
answer = HalfBodySimpson(z,N);
return answer;

}

//Returns Psi(e) = p(x < e)
//the cumulative distribution function of e.
//This depends
//on the distribution, it might be
//overridden in the corresponding classes.
double psi(double e)
{

return 0.5 + area(e);
}

//Returns the p-value(e) = p(x > e)
//Local implementation of the p-value of e
double pValue(double e)

369

{
return 1- psi(e);

}

//Local manager
void pExecutor(double testValue)
{

System.out.println("\nTest value = " + testValue);
System.out.print("Simpson’s rule."+

"\nArea = p(0 < x < " + testValue + ") = ");
double area = area(testValue);
System.out.println(area);
//psi(e) = p(x < e)
double psi = psi(testValue);
System.out.println("psi(" + testValue + ") " +

"= p(x < " + testValue + ") = " + psi);
double pValue = pValue(testValue);
System.out.println("p-value(" +

testValue + ") = " +
"p(x > " + testValue + ") = " + pValue);

}

//========Critical values=====

//Reports the transformed upper u-critical for
//the given distribution.
//Significance level = alpha.
//Precision=1/N.
//Simpson’s rule adapted for reuse.
//The error of approximation is also calculated.
double upperU(double h, double target)
{

double r = h/6;
jCritic = 0;
double sum = sumzero;
for(int j= 0; sum < target; j++)

{
sum = sum +

370 ANSWERS TO EXERCISES

r * (f(j * h) + 4 * f((j+0.5) * h) + f((j+1) * h));
jCritic = j+1;

}
jCritic = jCritic-1;
double greatSum = sum -

r * (f(jCritic * h) + 4 * f((jCritic+0.5) * h)
+ f((jCritic+1) * h));

Error = target-greatSum;
double uAprox = (jCritic) * h;
return uAprox;

}

//Returns the transformed value z = u/(1-u * u)
double z(double u)
{

double z = u/(1-u * u);
return z;

}

//The wide of subintervals is defined
double h()
{

double u = 1;
int i=3;
long N = (int) Math.pow(10, i);
double h = u/N;
return h;

}

//Reports the upper z-critical for
//Significance level = alpha.
double vCrit(double target)
{

double h = h();
//System.out.println("h = " + h);
double uCritic = upperU(h, target);
double zCritic = z(uCritic);

371

return zCritic;
}

// ***** Analytical hunting *******

//Returns the density function of the distribution
abstract double ff(double z);

//Returns G(a,b) = h(f(a) + 4 * ff((a+b)/2)
// + ff(b))-Error;
double G(double a, double b)
{

double h = (b-a)/6;
double Gb = h * (ff(a) + 4 * ff((a+b)/2)

+ ff(b))-Error;
return Gb;

}

//Returns the ratio G(zCritic,gi)/ ff(gi)
double ratio(double zCritic, double gi)
{

double ratio = G(zCritic,gi)/ ff(gi) ;
return ratio;

}

//Critical value for the upper tail.
//A professional approximation is found by
//analytical hunting
double hunting(double zCritic)
{

double h = h();
double ur = (jCritic+1) * h;
//Right border of the critical interval
double rBorder = z(ur);
double gSubi = rBorder;

372 ANSWERS TO EXERCISES

double gSubiPlus= 0;
int iterations = 0;
int maxIterations = 30;
boolean more = true;
while (more)

{
gSubiPlus = gSubi - ratio(zCritic, gSubi);
iterations = iterations +1;
if (iterations >= maxIterations) more = false;
if (gSubiPlus == gSubi) more = false;
gSubi = gSubiPlus;

}
return gSubiPlus;

}

//Critical value for significance level alpha, one tail
double critical(double alpha)
{

double target = 1-alpha;
double vCritic = vCrit(target);
//vCritic = hunting(vCritic);
return vCritic;

}

//Local manager
void critManager(double alpha)
{
System.out.println("\nAlpha = Significance level = "
+ alpha + ".");

System.out.println("Critical values for ONE TAIL = "
+ critical(alpha));

double alphaHalf = alpha/2;
System.out.println("Critical values for TWO TAILS = "

+ critical(alphaHalf));
}

}//end of class ValueAbstract

373

//======Particular classes========

//The z class.
//Definition of the z density function
//and exclusive to it methods.
//It is an specification of the ValueAbstract class.
class zClass extends ValueAbstract
{

//Constructor: this is the first thing to do
zClass()
{

sumzero = 0.5; //half bell
//System.out.println("\n===== z distribution");

}

//Function f is implemented here.
//Returns the transformed density function of the
//standardized normal distribution.
double f(double t)
{

double z = t/(1-t * t);
double f = 1 /Math.pow(2 * pi, 0.5) * Math.exp(-z * z/2) *

(1+ t * t)/((1-t * t) * (1-t * t));
return f;

}

//Returns the density function of the Z distribution
double ff(double z)
{

double ff = Math.exp(-z * z/2)/Math.pow(2 * pi, 0.5);
return ff;

}

374 ANSWERS TO EXERCISES

}//end of class VzClass

//The t class
//Definition of the t density function
//and exclusive to it methods.
//It is an specification of the ValueAbstract class.
class tClass extends ValueAbstract
{

//Constructor: this is the first thing to do
tClass()
{

sumzero = 0.5; //half bell
//System.out.println("\n===== t distribution");
//System.out.println("t degrees of freedom = " + dfT);

}

//Function f is implemented here.
//Returns the transformed density function of the
//t distribution with dfT d.f.
double f(double t)
{

double nu = dfT;
double z = t/(1-t * t);
double f = (Gamma((nu+1)/2)

/ (Math.sqrt(pi * nu) * Gamma(nu/2)))

* Math.pow(1+z * z/nu, -(nu+1)/2)

* (1+ t * t)/((1-t * t) * (1-t * t));
return f;

}

//Returns the density function of the t-distribution
double ff(double z)
{

double nu = dfT;

375

double ff = (Gamma((nu+1)/2)
/ (Math.sqrt(pi * nu) * Gamma(nu/2)))

* Math.pow(1+z * z/nu, -(nu+1)/2) ;
return ff;

}

}//end of class VtClass

//The chi2 class
//Definition of the Chi2 density function
//and exclusive to it methods.
//It is an specification of the ValueAbstract class.
class chi2Class extends ValueAbstract
{

//Constructor: this is the first thing to do
chi2Class()
{

sumzero = 0; //no negative values
//System.out.println("\n===== Chi2 distribution");
/ * System.out.println("Chi2 degrees of freedom = "
+ dfChi2); * /

}

//Returns Psi(e) = p(x < e)
//the cumulative distribution function of e
double psi(double e)
{

return area(e);
}

//Function f is implemented here.
//Returns the transformed density function of the
//chi2 distribution with nu d.f.
double f(double t)
{

double nu = dfChi2;
double z = t/(1-t * t);

376 ANSWERS TO EXERCISES

double f = (1 /
(Math.pow(2, nu/2) * Gamma(nu/2)))

* Math.exp(-z/2) * Math.pow(z, (nu-2)/2)

* (1+ t * t)/((1-t * t) * (1-t * t));
return f;

}

//Returns the density function of the chi2-distribution
double ff(double z)
{

double nu = dfChi2;
double ff = (1/(Math.pow(2, nu/2) * Gamma(nu/2)))

* Math.exp(-z/2) * Math.pow(z, (nu-2)/2);
return ff;

}

//Local manager
void critManager(double alpha)
{

System.out.println("Critical values for ONE TAIL "
+ "\nof the chi-square- "

+ "distribution with df = "
+ dfChi2
+ "\nAlpha = Significance level = "
+ alpha + ".");

System.out.println("Lower critical value = "
+ critical(1-alpha));

System.out.println("Upper critical value = "
+ critical(alpha));

System.out.println("\nCritical values for TWO TAILS "
+ "\nof the chi-square "

+ "distribution with df= "
+ dfChi2
+ "\nAlpha = Significance level = "
+ alpha + ".");

377

double alphaHalf = alpha/2;
double Chi2Menos = critical(1-alphaHalf) ;
System.out.println("Lower critical value = "

+ Chi2Menos);
double Chi2Mas = critical(alphaHalf) ;
System.out.println("Upper critical value = "

+ Chi2Mas);
}
}//end of class pVChi2Class

//The F class
//Definition of the Chi2 density function
//and exclusive to it methods.
//It is an specification of the ValueAbstract class.
class FClass extends ValueAbstract
{

//Constructor: this is the first thing to do
FClass()
{

sumzero = 0; //no negative values
}

//Returns a helping function with d.f. =
//a(num) and b(den)
double g(double x, double a, double b)
{
double g = Math.pow(x, a -1) *

(Math.pow(1-x, b -1));
return g;
}

//Returns the integral under the function f
//in within 0 and u. Precision=1/N.
//Simpson’s rule adapted for reuse.
//a and b are degrees of freedom

378 ANSWERS TO EXERCISES

double HalfBodySimpsong(double u,
double a, double b, long N)
{
double h = u/(2 * N);
long m = N;
double sum = g(0,a,b);
for(int j= 1; j<=m; j++)

sum = sum + 4* g((2 * j-1) * h,a,b);
for(int j= 1; j<m; j++)

sum = sum + 2* g((2 * j) * h,a,b);
sum = sum + g((2 * m) * h,a,b);
sum = (h/3) * sum;
return sum;
}

//Returns the beta function in integral form
//with a and b d.f.
double beta(double a, double b)
{
double answer;
int i = 4;
int N = (int) Math.pow(10, i);
double u=1;
answer = HalfBodySimpsong(u,a,b,N);
return answer;
}

// **************** F density function *************

//Returns the transformed density function of the
//F distribution with nu1 and nu2 d.f.
double FFunction(double t)
{
double nu1 = dfFNum;
double nu2 = dfFDen;
double z = t/(1-t * t);
double f = k * Math.pow(z, nu1/2-1)

379

* Math.pow(nu2+nu1 * z, -(nu1+nu2)/2)

* ((1+ t * t)/((1-t * t) * (1-t * t))) ;
//System.out.println(f);
return f;
}

//To use this method for another distribution,
//instead of FFunction(z), write and make a call for your
//new distribution.
double f(double z)
{
double f = FFunction(z);
return f;
}

//Reports the transformed upper u-critical for
//the given distribution.
//Significance level = alpha.
//Precision=1/N.
//Simpson’s rule adapted for reuse.
//The error of approximation is also calculated.
double upperU(double h, double target)
{
double nu1 = dfFNum;
double nu2 = dfFDen;
double a = Math.pow(nu1, nu1/2);
double b = Math.pow(nu2, nu2/2);
double c = beta(nu1/2,nu2/2);
k = a * b / c;
double r = h/6;
double sum = 0;
jCritic = 0;
for(int j= 0; sum < target; j++)
{

sum = sum +
r * (f(j * h) + 4 * f((j+0.5) * h) + f((j+1) * h));

jCritic = j+1;

380 ANSWERS TO EXERCISES

}
jCritic = jCritic-1;
double greatSum = sum -

r * (f(jCritic * h) + 4 * f((jCritic+0.5) * h)
+ f((jCritic+1) * h));

Error = target-greatSum;
double uAprox = (jCritic) * h;
return uAprox;
}

//Returns the transformed value z = u/(1-u * u)
double z(double u)
{
double z = u/(1-u * u);
return z;
}

//The wide of subintervals is defined
double h()
{
double u = 1;
int i=3;
long N = (int) Math.pow(10, i);
double h = u/N;
return h;
}

//Reports the upper z-critical for
//Significance level = alpha.
double vCrit(double target)
{
double h = h();
double uCritic = upperU(h, target);
double zCritic = z(uCritic);
return zCritic;
}

// ***** Analytical hunting *******

381

//Returns the density function of the t-distribution
double ff(double z)
{
double nu1 = dfFNum;
double nu2 = dfFDen;
double f = k * Math.pow(z, nu1/2-1)

* Math.pow(nu2+nu1 * z, -(nu1+nu2)/2) ;
return f;
}

//Returns F(a,b) = h(f(a) + 4 * f((a+b)/2) + f(b))-Error;
double F(double a, double b)
{
double h = (b-a)/6;

double Fb = h * (ff(a) + 4 * ff((a+b)/2)
+ ff(b))-Error;

return Fb;
}

//Returns the ratio F(zCritic,gi)/ ff(gi)
double ratio(double zCritic, double gi)
{
double ratio = F(zCritic,gi)/ ff(gi) ;
return ratio;
}

//Critical value for the upper tail.
//A professional approximation is found by
//analytical hunting
double hunting(double zCritic)
{
double h = h();
double ur = (jCritic+1) * h;
//Right border of the critical interval
double rBorder = z(ur);

382 ANSWERS TO EXERCISES

double gSubi = rBorder;
double gSubiPlus= 0;
int iterations = 0;
int maxIterations = 30;
boolean more = true;
while (more)
{
gSubiPlus = gSubi - ratio(zCritic, gSubi);
iterations = iterations +1;
if (iterations >= maxIterations) more = false;
if (gSubiPlus == gSubi) more = false;
gSubi = gSubiPlus;
}
return gSubiPlus;
}

//Critical value for significance level alpha, one tail
double critical(double alpha)
{
double target = 1-alpha;
double zCritic = vCrit(target);
zCritic = hunting(zCritic);
return zCritic;
}

//Local manager
void critManager(double alpha)
{

System.out.println("\nF distribution");
System.out.println("Critical values for ONE TAIL "

+ "\nof the F- "
+ "distribution with df: "
+ dfFNum + " and " + dfFDen+ ", "
+ "\nAlpha = Significance level = "
+ alpha + ".");

System.out.println("Lower critical value = "
+ critical(1-alpha));
System.out.println("Upper critical value = "

383

+ critical(alpha));

System.out.println("\nCritical values for TWO TAILS "
+ "\nof the f "

+ "distribution."
+ "\nAlpha = Significance level = "
+ alpha + ".");
double alphaHalf = alpha/2;

System.out.println("Lower critical value = "
+ critical(1-alphaHalf));
System.out.println("Upper critical value = "
+ critical(alphaHalf));
}
}//end of class pVFClass

//========== Normal partitions ==========

//Let Z have a standard normal distribution with
//given mean = 0 and deviation = 1.
//Which is the probability of the regions of
//the Z axis defined by a partition?
//Amplifying factor = F.

static void partitionZ(double[] partitionZ, int F)
{

printList(partitionZ,"partitionZ");
System.out.println("AmpliFactor = F = " + F);
int l = partitionZ.length;
double Psi[] = new double[l+1];
//Top abstract class is instructed to take
//the form of the particular class
p = z;
//PSi values
for(int i = 0; i< l; i++)
Psi[i] = p.psi(partitionZ[i]);
Psi[l] = 1;

384 ANSWERS TO EXERCISES

printList(Psi,"Psi(partitionZ[i])");
//Probabilities
double prob[] = new double[l+1];
prob[0] = Psi[0];
for(int i = 1; i<= l; i++)
prob[i] = Psi[i] -Psi[i-1];
printList(prob,"Probabilities: prob[i] " +

"= Psi[i] -Psi[i-1]");
System.out.println("sum of probabilities = " +
sumVector(prob, l+1));
//Amplified prob
double n[] = new double[l+1];
for(int i = 0; i<= l; i++)
n[i] = F * prob[i];
printList(n,"Amplified probabilities = F * prob");
System.out.println("sum of amplified probabilities = " +
sumVector(n, l+1));

}

static void partitionZ()
{

//Problem 8, pag. 102
int F = 4500;
double partitionZ[] = {-1.2, 1.2, 2.2};
partitionZ(partitionZ,F);

}

//Let X have a normal distribution with
//given mean = mu and deviation = sigma.
//Which is the probability of the regions of
//the X axis defined by a partition?
//Amplifying factor = F.

static void partitionX()
{

//Example 79, pag. 57
double mu =40;
double sigma = 5;
int F = 2500;

385

double partitionX[] = {32,45,53};
printList(partitionX,"partitionX");
System.out.println("Mean = mu = " + mu);
System.out.println("Deviation = sigma = " + sigma);
System.out.println("Amplification factor = F = " + F);
int l = partitionX.length;
System.out.println("z-transform = (z-mu)/sigma");
double partitionZ[] = new double[l];
for(int i = 0; i < l; i++)
partitionZ[i] = (partitionX[i] - mu)/sigma;
partitionZ(partitionZ,F);

}

//=======================================
//======== THE 12 MOST USUAL TESTS ======
//=======================================

//======= 1: z-test for one mean ========

//Runs a z-test for the mean
//knowing the mean of a random sample
//and the populational variance.
//Confidence interval for the mean is also calculated.

static void printData1(double xBar, double mu,
double sigma, double n, double alpha)
{

System.out.println("\nz Test to study the null" +
"\nhypothesis about a mean given the mean " +
"\nof a random sample and the standard deviation" +
"\nof the population.\n");
System.out.println("Observed mean = xBar = " + xBar);
System.out.println("Ho: expected mean = mu = " + mu);

386 ANSWERS TO EXERCISES

System.out.println("sigma = " + sigma);
System.out.println("n = " + n);
System.out.println("alpha = " + alpha);

}

/ * Measures the discrepancy between observed and expected

* in z Test to study the null hypothesis about a mean

* given the mean of a sample and the standard deviation

* of the population. * /
static double zExpOneMean(double xBar, double mu,
double sigma, double n)
{

System.out.println(
"zExp = (xBar- mu)/(sigma/Math.sqrt(n))");

double zExp = (xBar- mu)/(sigma/Math.sqrt(n));
return zExp;

}

/ * Confidence interval for the mean
given the populational variance * /
static void confIntMeanZ(double xBar, double mu,
double sigma, double n, double alpha)
{

System.out.println("\nConfidence interval of the mean" +
" \ngiven the populational deviation sigma");

double alphaHalf = alpha/2;
System.out.println("alpha = " + alpha);
double zc2 = p.critical(alphaHalf);
double r = zc2 * sigma / Math.sqrt(n);
System.out.println("r = zc2 * sigma / Math.sqrt(n)");
System.out.printf("r = %10.4f \n", r);
double limInf = xBar - r;
double limSup = xBar + r;
System.out.printf("limInf = xBar - r " +

"= %10.4f \n" , limInf);
System.out.printf("limSup = xBar + r " +

"= %10.4f \n", limSup);
}

387

static //Standard error of the mean
double sError(double sigma, double n)
{

System.out.println("\nStandard error = " +
"sigma/Math.sqrt(n)");

return sigma/Math.sqrt(n);
}

static //Needed n = size of the sample
//given tolerance E in the evaluation of the mean.
int nNeeded(double sigma, double E)
{

System.out.println("\nTolerance error E = "+ E);
//Critical z with two tails
double alphaHalf = alpha/2;
double zc2 = p.critical(alphaHalf);
System.out.println("m= " + "zc2 * sigma / E ");
//Needed n
double m = zc2 * sigma / E;
System.out.println("Needed n = m * m");
//Upwards approximation
return (int) Math.ceil(m * m);

}

//Runs a z test for one mean
public static void zTestOneMeanWork(double xBar, double m u,
double sigma, double n, double alpha)
{

//Top class is instructed to take
//the form of the particular class
p = z;
//z-test for one mean
printData1(xBar,mu,sigma,n,alpha);
//Critical values
double zCriticOneTail = p.critical(alpha);
double alphaHalf = alpha/2;

388 ANSWERS TO EXERCISES

double zCriticTwoTails = p.critical(alphaHalf);
//z-test
System.out.printf("Discrepancy between observed and ");
System.out.printf("expected: \n");
double zExp = zExpOneMean(xBar,mu,sigma,n);
System.out.printf("zExp = %10.4f \n" , zExp);
double pValue = p.pValue(zExp);
System.out.println("p-value(" +

zExp + ") = " +
"p(x > " + zExp + ") = " + pValue);

System.out.printf("zCritic for TWO TAILS " +
"= zc2 = +/-%10.4f \n", zCriticTwoTails);
System.out.printf("zCritic for ONE TAIL " +
"= zc1 = +/-%10.4f \n", zCriticOneTail);
//Standard error
double error = sError(sigma,n);
System.out.printf("Standard error = %10.4f \n", error);
//Confidence interval
confIntMeanZ(xBar,mu,sigma,n,alpha);
//Admitted tolerance for mu
double E = 5;
//Size of sample to attain tolerance E
int nNeeded = nNeeded(sigma, E);
System.out.printf("Needed n = %10d \n", nNeeded);
separator();
}

//Data input for a z test for one mean
public static void zTestOneMean()
{
//Example 184, pg 169
double xBar = 40;
double mu = 20;
double sigma = 16;
double n = 36;
alpha = 0.05;
zTestOneMeanWork(xBar,mu,sigma,n,alpha);

389

}

//======= 2: z-test for two means ========

static void printData2(double xBar, double yBar,
double mux, double muy,

double sigmax, double sigmay,
double nx, double ny,
double alpha)

{
System.out.println("\nz Test to study the null" +
"\nhypothesis about the difference between two means" +
"\ngiven the means of two random samples and " +
"\nthe standard deviations of the populations\n");

System.out.println("Observed means: ");
System.out.println("xBar = " + xBar);
System.out.println("yBar = " + yBar);
System.out.println("Ho: expected means: ");
System.out.println("mux = " + mux);
System.out.println("muy = " + muy);
System.out.println("sigmax = " + sigmax);
System.out.println("sigmay = " + sigmay);
System.out.println("nx = " + nx);
System.out.println("ny = " + ny);
System.out.println("alpha = " + alpha);

}

/ * Measures the discrepancy between observed and expected

* in z Test to study the null hypothesis about

* the difference between tow means. * /
static double zExpTwoMeans(double xBar, double yBar,

double mux, double muy,
double sigmax, double sigmay,
double nx, double ny)

{
double jointDev =

390 ANSWERS TO EXERCISES

Math.sqrt(sigmax * sigmax/nx + sigmay * sigmay/ny);
System.out.println("jointDev = " +
" Math.sqrt(sigmax * sigmax/nx + sigmay * sigmay/ny);");
System.out.println("jointDev = " + jointDev);
System.out.printf("Discrepancy between observed and ");
System.out.printf("expected: \n");
System.out.println(

"zExp = ((xBar-yBar) -(mux-muy)) / jointDev ");
double zExp = ((xBar-yBar) -(mux-muy))/jointDev;
return zExp;

}

/ * Confidence interval for the difference of means
given populational variances * /
static void confIntDiffMeansZ(double xBar, double yBar,

double sigmax, double sigmay,
double nx, double ny,
double alpha)

{
System.out.println("\nConfidence interval of the " +

" \ndifference between means " +
"given the populational deviations");

double alphaHalf = alpha/2;
System.out.println("alpha = " + alpha);
double zc2 = p.critical(alphaHalf);

System.out.println("Critical z = zc2 = +/-"
+ zc2);

double jointDev =
Math.sqrt(sigmax * sigmax/nx + sigmay * sigmay/ny);
System.out.println("jointDev = " +

" Math.sqrt(sigmax * sigmax/nx + sigmay * sigmay/ny);");
System.out.println("jointDev = " + jointDev);
double r = zc2 * jointDev;
System.out.println("r = zc2 * jointDev");
System.out.printf("r = %10.4f \n", r);

double limInf2 = xBar-yBar - r;
double limSup2 = xBar-yBar + r;

System.out.printf("limInf = xBar-yBar - r " +
"= %10.4f \n" , limInf2);

391

System.out.printf("limSup = xBar-yBar + r " +
"= %10.4f \n", limSup2);

}

/ * z Test to study the null hypothesis about the difference

* between two means

* given the means of samples and standard deviations

* of the population. * /
private static void zTestTwoMeansWork(
double xBar, double yBar,

double mux, double muy,
double sigmax, double sigmay,
double nx, double ny,
double alpha)

{
//Top abstract class is instructed to take
//the form of the particular class
p = z;
printData2(xBar, yBar,mux, muy,

sigmax, sigmay,
nx, ny,
alpha);

//Critical values
double zCriticOneTail = p.critical(alpha);
double alphaHalf = alpha/2;
double zCriticTwoTails = p.critical(alphaHalf);
//z-test
double zExp = zExpTwoMeans(xBar, yBar,mux, muy,

sigmax, sigmay,
nx, ny);

System.out.printf("zExp = %10.4f \n" , zExp);
//p-value
double pValue = p.pValue(zExp);
System.out.println("p-value(" + zExp + ") = " +

"p(x > " + zExp + ") \n = " + pValue);
System.out.printf("zCritic for TWO TAILS " +

"= zc2 = +/-%10.4f \n", zCriticTwoTails);
System.out.printf("zCritic for ONE TAIL " +

392 ANSWERS TO EXERCISES

"= zc1 = +/-%10.4f \n", zCriticOneTail);
//Confidence interval
confIntDiffMeansZ(xBar, yBar,

sigmax, sigmay,
nx, ny,
alpha);

separator();
}

/ * Data input to a z Test to study

* the null hypothesis about the difference

* between two means

* given the means of samples and standard deviations

* of the population. * /
private static void zTestTwoMeans()
{

//Example 190 pag. 172
double mux = 3.2;
double muy = 4.5;
double sigmax = 1;
double sigmay = Math.sqrt(0.2);
double xBar = 4.2;
double yBar = 3.8;
double nx = 4;
double ny = 4;
double alpha = 0.05;
zTestTwoMeansWork(xBar, yBar,mux, muy,

sigmax, sigmay,
nx, ny,
alpha);

}

//======= 3: t-test for one mean ========

static void printData3(double xBar, double mu,
double s, double n, double alpha)
{
System.out.println("\nt-Test to study the null" +

393

"\nhypothesis about a mean given the mean and deviation"
+ "\nof a random sample.\n");

System.out.println("Observed mean = xBar = " + xBar);
System.out.println("Ho: expected mean = mu = " + mu);
System.out.println("deviation = " + s);
System.out.println("n = " + n);
System.out.println("alpha = " + alpha);
}

/ * Measures the discrepancy between observed and expected

* in a t-Test to study the null hypothesis about a mean

* given the mean and deviation of a sample. * /
static double tExpOneMean(double xBar, double mu,
double s, double n)
{
System.out.println(

"tExp = (xBar- mu)/(s/Math.sqrt(n))");
double tExp = (xBar- mu)/(s/Math.sqrt(n));
return tExp;
}

/ * Confidence interval for the mean
given the populational variance * /
static void confIntMeanT(double xBar, double mu,
double s, double n, double alpha)
{
System.out.println("\nConfidence interval of the mean" +
" \ngiven the sample deviation s");
double alphaHalf = alpha/2;
System.out.println("alpha = " + alpha);
dfT = n-1;
System.out.println("dfT = " + dfT);
double tc2 = p.critical(alphaHalf);
double r = tc2 * s / Math.sqrt(n);
System.out.println("r = tc2 * sigma / Math.sqrt(n)");
System.out.printf("r = %10.4f \n", r);
double limInf = xBar - r;
double limSup = xBar + r;

394 ANSWERS TO EXERCISES

System.out.printf("limInf = xBar - r " +
"= %10.4f \n" , limInf);

System.out.printf("limSup = xBar + r " +
"= %10.4f \n", limSup);

}

/ * t Test to study the null hypothesis about a mean

* given the mean of a sample and the standard deviation

* of the sample. * /
private static void tTestOneMeanWork(
double xBar, double mu,
double s, double n, double alpha)
{

//Degrees of freedom
dfT = n-1;
//Truncation of degrees of freedom
if (dfT > 40) dfT = 40;
//Top abstract class is instructed to take
//the form of the particular class
p = t;
//z-test for one mean
printData3(xBar,mu,s,n,alpha);
System.out.println("dfT = " + dfT);
//Critical values
double tCriticOneTail = p.critical(alpha);
double alphaHalf = alpha/2;
double tCriticTwoTails = p.critical(alphaHalf);
//z-test
System.out.printf("Discrepancy between observed and ");
System.out.printf("expected: \n");
double tExp = tExpOneMean(xBar,mu,s,n);
System.out.printf("tExp = %10.4f \n" , tExp);
double pValue = p.pValue(tExp);
System.out.println("p-value(" +

tExp + ") = " +
"p(x > " + tExp + ") \n = " + pValue);

System.out.printf("t-Critic for TWO TAILS " +
"= tc2 = +/-%10.4f \n", tCriticTwoTails);

System.out.printf("zCritic for ONE TAIL " +

395

"= tc1 = +/-%10.4f \n", tCriticOneTail);
//Confidence interval
confIntMeanT(xBar,mu,s,n,alpha);
separator();

}

/ * Data input for a t Test to study

* the null hypothesis about a mean

* given the mean of a sample and the standard deviation

* of the sample. * /
private static void tTestOneMean()
{

//Example 194 pag. 175
double n = 20;
double xBar = 7;
double s = 1.3;
double mu = 5;
double alpha = 0.05;
tTestOneMeanWork(xBar,mu,s,n,alpha);

}

//======= 4: z-test for one proportion ========

/ * z Test to study the null hypothesis about

* a proportion given the observed relative frequency

* of a random sample.

* /

static void printData4(double x, double n,
double p, double alpha)

{
System.out.println("\nz Test to study the null" +
"\nhypothesis about a proportion given the " +
"\nobserved relative frequency of a random sample.\n");
System.out.println("Observed events = x = " + x);
System.out.println("n = " + n);
System.out.println("Observed relative frequency = f = " +

"x/n =" + x/n);

396 ANSWERS TO EXERCISES

System.out.println("Ho: expected proportion = p = " + p);
System.out.println("n = " + n);
System.out.println("alpha = " + alpha);

}

/ * Measures the discrepancy between observed and expected

* in a z-Test to study the null hypothesis about a

* proportion given the observed relative frequency

* of a random sample. * /
static double zExpOneProp(double x, double n,

double p)
{

double f = x/n;
System.out.println(

"zExp = (f- p)/(Math.sqrt(p * (1-p)/n))");
double zExp = (f- p)/(Math.sqrt(p * (1-p)/n));
return zExp;

}

/ * Confidence interval for the proportion
given the observed relative frequency * /
static void confIntOnePropZ(double x, double n,

double alpha)
{

System.out.println("\nConfidence interval " +
"of the proportion" +

" \ngiven the observed relative frequency");
double alphaHalf = alpha/2;
System.out.println("alpha = " + alpha);
double zc2 = p.critical(alphaHalf);
double f = x/n;
System.out.println("f = x/n= " + f);
double r = zc2 * Math.sqrt(f * (1-f)/n);
System.out.println("r = zc2 * Math.sqrt(f * (1-f)/n)");
System.out.printf("r = %10.4f \n", r);
double limInf = f - r;
double limSup = f + r;

397

System.out.printf("limInf = xBar - r " +
"= %10.4f \n" , limInf);

System.out.printf("limSup = xBar + r " +
"= %10.4f \n", limSup);

}

//Needed n = size of the sample
//given tolerance E in the evaluation of the proportion.
static int nNeededOneProp(double alpha, double E)
{

System.out.println("\nTolerance error E = "+ E);
//Critical z with two tails
double alphaHalf = alpha/2;
double zc2 = p.critical(alphaHalf);
System.out.println("m= " + "zc2 * /(2 * E) ");
//Needed n
double m = zc2 /(2 * E) ;
System.out.println("Needed n = m * m");
//Upwards approximation
return (int) Math.ceil(m * m);

}

//Runs a z test for one proportion
public static void zTestOnepropWork(double x, double n,

double pzero, double alpha)
{

//Top class is instructed to take
//the form of the particular class
p = z;
//z-test for one mean
printData4(x,n,pzero,alpha);
//Critical values
double zCriticOneTail = p.critical(alpha);
double alphaHalf = alpha/2;
double zCriticTwoTails = p.critical(alphaHalf);
//z-test
System.out.printf("Discrepancy between observed and ");

398 ANSWERS TO EXERCISES

System.out.printf("expected: \n");
double zExp = zExpOneProp(x,n,pzero);
System.out.printf("zExp = %10.4f \n" , zExp);
double pValue = p.pValue(zExp);
System.out.println("p-value(" +

zExp + ") = " +
"p(x > " + zExp + ") = " + pValue);

System.out.printf("zCritic for TWO TAILS " +
"= zc2 = +/-%10.4f \n", zCriticTwoTails);

System.out.printf("zCritic for ONE TAIL " +
"= zc1 = +/-%10.4f \n", zCriticOneTail);

//Confidence interval
confIntOnePropZ(x, n, alpha);
//Admitted tolerance for p
double E = 0.1;
//Size of sample to attain tolerance E
int nNeeded = nNeededOneProp(alpha, E);
System.out.printf("Needed n = %10d \n", nNeeded);
separator();

}

//Data input for a z-test for one proportion
private static void zTestOneProp()

{
//Example 196, pag. 177
double x = 5;
double n = 20;
double p = 0.3;
double alpha = 0.05;
zTestOnepropWork(x, n, p, alpha);

}

//======= 5: z-test for two proportions ========

/ * z-Test for the comparison of two proportions

* against the observed frequencies in two samples.

399

* /

static void printData5(double x, double m,
double y, double n,

double p, double r, double alpha)
{

System.out.println("\nz Test to study the null" +
"\nhypothesis about the difference between " +
"two proportions \ngiven the " +
"\nobserved relative frequencies" +
" of two random samples.\n");
System.out.println("Observed events :");
System.out.println("x = " + x);
System.out.println("m = " + m);
System.out.println("y = " + y);
System.out.println("n = " + n);
double f = x/m;
System.out.println("f = = x/m = " + f);
double g = y/n;
System.out.println("g = = y/n = " + g);
System.out.println("p = " + p);
System.out.println("r = " + r);
double pMinusR = p-r;
System.out.println("Ho: expected difference" +

" between proportions: ");
System.out.println("p-r = " + pMinusR);
double fMinusg = f-g;
System.out.println("Observed difference" +

" between relative frequencies:\nf-g= "+ fMinusg);
System.out.println("alpha = " + alpha);
double sBi = Math.sqrt(p * (1-p)/m+ r * (1-r)/n);
System.out.println("sBi = Math.sqrt(p * (1-p)/m" +

"+ r * (1-r)/n) = " + sBi);
}

/ * Measures the discrepancy between observed and expected

* in a z-Test to study the null hypothesis about

* the difference between two proportions given

400 ANSWERS TO EXERCISES

* the observed relative frequencies

* of two random samples. * /
static double zExpTwoProp(double x, double m,

double y, double n,
double p, double r)

{
double f = x/m;
double g = y/n;
double num = (f-g)-(p-r);
System.out.println("num = (f-g)-(p-r) = " + num);
//Binomial deviation
double sBi = Math.sqrt(p * (1-p)/m+ r * (1-r)/n);
System.out.println("zExp = num/sBi");
double zExp = num/sBi;
return zExp;

}

/ * Confidence interval for the difference between two

* proportions given the observed relative frequencies * /
static void confIntTwoPropZ(double x, double m,

double y, double n, double alpha)
{

System.out.println("\nConfidence interval " +
"of the difference between proportions" +
" \ngiven the observed relative frequencies");

double alphaHalf = alpha/2;
System.out.println("alpha = " + alpha);
double zc2 = p.critical(alphaHalf);
double f = x/m;
double g = y/n;
double sBiHat = Math.sqrt(f * (1-f)/n+ g * (1-g)/n);
System.out.println("sBiHat = " +

"Math.sqrt(f * (1-f)/n+ g * (1-g)/n)"
+ sBiHat);
double rr = zc2 * sBiHat;
System.out.println("rr = zc2 * sBiHat");
System.out.printf("rr = %10.4f \n", rr);
double limInf = f -g- rr;
double limSup = f -g + rr;

401

System.out.printf("limInf = xBar - rr " +
"= %10.4f \n" , limInf);

System.out.printf("limSup = xBar + rr " +
"= %10.4f \n", limSup);

}

static void more(double x, double m,
double y, double n,
double pzero, double r, double alpha)

{
double f = x/m;
double g = y/n;
double pHat = (x + y)/(m+n);
System.out.println("\npHat = (x + y)/(m+n) = " + pHat);
double sBiHat = Math.pow(pHat * (1-pHat) * (1/m+1/n), 0.5);
System.out.println("\nsBiHat = " +

"Math.pow(pHat * (1-pHat) * (1/m+1/n), 0.5)");
System.out.println("sBiHat = " + sBiHat);
double zExpHat = ((f-g)-(pzero-r))/sBiHat;
System.out.println("zExpHat = ((f-g)-(p-r))/sBiHat");
System.out.println("zExpHat = " + zExpHat);
double sApprox = Math.pow(f * (1-f)/m + g * (1-g)/n, 0.5);
System.out.println("\nsApprox = " +

"Math.pow(f * (1-f)/m + g * (1-g)/n, 0.5)");
System.out.println("sApprox = " + sApprox);
double zA = ((f-g) - (pzero-r))/(sApprox);
System.out.println("zExp approx = " +

"((f-g) - (p-r))/(sApprox)");
System.out.println("zEXp approx = " + zA);
double alphaHalf = alpha/2;
double zCritic = p.critical(alphaHalf);
double b1 = f-g - zCritic * sBiHat;
double b2 = f-g + zCritic * sBiHat;
double c1 = f-g - zCritic * sApprox;
double c2 = f-g + zCritic * sApprox;
double fMinusg = f-g;
System.out.println("\nf-g = " +fMinusg);
System.out.println("Borders of IC = f-g +/- zCritic * s");

402 ANSWERS TO EXERCISES

System.out.println("IC BiHAt (" + b1 +
", " + b2 + ")");
System.out.println("IC approx (" + c1 +
", " + c2 + ")");

}

//Runs a z test for one proportion
public static void zTestTwopropWork(double x, double m,

double y, double n,
double pzero, double r, double alpha)

{
//Top class is instructed to take
//the form of the particular class
p = z;
//z-test for one mean
printData5(x,m,y,n,pzero,r,alpha);
//Critical values
double zCriticOneTail = p.critical(alpha);
double alphaHalf = alpha/2;
double zCriticTwoTails = p.critical(alphaHalf);
//z-test
System.out.printf("Discrepancy between observed and ");
System.out.printf("expected: \n");
double zExp = zExpTwoProp(x,m,y,n,pzero,r);
System.out.printf("zExp = %10.4f \n" , zExp);
double pValue = p.pValue(zExp);
System.out.println("p-value(" +
zExp + ") = " +
"p(x > " + zExp + ") = " + pValue);
System.out.printf("zCritic for TWO TAILS " +
"= zc2 = +/-%10.4f \n", zCriticTwoTails);
System.out.printf("zCritic for ONE TAIL " +
"= zc1 = +/-%10.4f \n", zCriticOneTail);
//Confidence interval
confIntTwoPropZ(x,m,y,n,alpha);
more(x,m,y,n,pzero,r,alpha);
separator();

}

403

//Data input for a z-test for two proportions
public static void zTestTwoProp()

{
double x = 235;
double m = 300;
double y = 70;
double n = 200;
double p = 0.7;
double r = 0.3;
double alpha = 0.05;
zTestTwopropWork(x,m,y,n,p,r,alpha);

}

//======= 6: chi2-test for one variance ========

//Runs a chi2-test for one variance.
//Confidence interval is also calculated.

static void printData6(double sigma,
double s, double n, double alpha)
{
System.out.println("\nchi2-Test to study the null" +

"\nhypothesis about a variance given the deviation" +
"\nof a random sample.\n");

System.out.println("Observed deviation = s = " + s);
System.out.println("Observed variance = sˆ2 = " + s * s);
System.out.println("Ho: populational variance = " +
"sigmaˆ2 = " + sigma * sigma);
System.out.println("n = " + n);
double df = n-1;
System.out.println("Degrees of freedom of the chi2 = "
+ df);
System.out.println("alpha = " + alpha);
}

/ * Measures the discrepancy between observed and expected

* in a t-Test to study the null hypothesis about a mean

404 ANSWERS TO EXERCISES

* given the mean and deviation of a sample. * /
static double chi2ExpOneVar(double sigma,
double s, double n)
{

double var = s * s;
double sigma2 = sigma * sigma;
System.out.println(

"chi2Exp = (n-1) * var/sigma2");
double chi2Exp = (n-1) * var/sigma2;

return chi2Exp;
}

/ * Confidence interval for the populational variance * /
static void confIntOneVarChi2(double sigma,
double s, double n, double alpha)
{

System.out.println("\nConfidence interval of the varian ce"
" \ngiven the sample variance s * s");

double alphaHalf = alpha/2;
System.out.println("alpha = " + alpha);
dfChi2 = n-1;
System.out.println("Degrees of freedom of the chi2 = "

+ dfChi2);
double Chi2Plus= p.critical(alphaHalf);
double Chi2Minus= p.critical(1-alphaHalf);
System.out.println("Upper critical chi2 value = " +

"chi2Plus = " + Chi2Plus);
System.out.println("Lower critical chi2 value = " +

"chi2Minus =" + Chi2Minus);
double limInf = s * s* (n-1)/(Chi2Plus);
double limSup = s * s* (n-1)/(Chi2Minus);
System.out.printf("limInf = var * (n-1)/(Chi2Plus) " +

"= %10.4f \n" , limInf);
System.out.printf("limSup = var * (n-1)/(Chi2Minus" +

"= %10.4f \n", limSup);
System.out.println("Confidence interval " +
"for the variance \n = (" + limInf + "," + limSup + ")");
limInf = Math.sqrt(limInf);

405

limSup = Math.sqrt(limSup);
System.out.println("Confidence interval " +
"for the deviation \n = (" + limInf + "," + limSup + ")");

}

/ * chi2-Test to study

* the null hypothesis about a variance

* given the variance of a sample. * /

private static void chi2TestOneVarWork(double sigma,
double s, double n, double alpha)
{

//Degrees of freedom
dfChi2 = n-1;
//Top abstract class is instructed to take
//the form of the particular class
p = chi2;
//z-test for one mean
printData6(sigma,s,n,alpha);
System.out.println("Degrees of freedom of the chi2 = "

+ dfChi2);
//Critical values
System.out.printf("Discrepancy between observed and ");
System.out.printf("expected: \n");
double chi2Exp = chi2ExpOneVar(sigma,s,n);
System.out.printf("chi2Exp = %10.4f \n" , chi2Exp);
double pValue = p.pValue(chi2Exp);
System.out.println("p-value(" +

chi2Exp + ") = " +
"p(x > " + chi2Exp + ") \n = " + pValue);

p.critManager(alpha);
//Confidence interval
confIntOneVarChi2(sigma,s,n,alpha);
separator();

}

406 ANSWERS TO EXERCISES

/ * Data input for a t Test to study

* the null hypothesis about a mean

* given the mean of a sample and the standard deviation

* of the sample. * /
private static void chi2TestOneVar()
{

//Examples 204 and 206, pag. 182
double sigma = Math.sqrt(5);
double s = 2;
double n = 9;
double alpha = 0.02;
chi2TestOneVarWork(sigma,s,n,alpha);

}

//======= 7: F-test for two variances ========

//Runs an F-test for variances.
//Confidence interval for the relation is also calculated.

static void printData7(double varx, double vary, double R,
double nx, double ny, double alpha)

{
System.out.println("\nF-Test to study the null" +
"\nhypothesis about the relation of two variances.\n");
System.out.println("Observed data: ");
System.out.println("\nvarx =" + varx);
System.out.println("nx = " + nx);
System.out.println("vary = " + vary);
System.out.println("ny= " + ny);

System.out.println("Ho: expected relation" +
" between populational variances = \nR =" +R);

System.out.println("alpha = " + alpha);
dfFNum = nx-1;
dfFDen = ny-1;

407

System.out.println("Degrees of freedom of the numerator= "
+ dfFNum);

System.out.println("Degrees of freedom of" +
" the denumerator= " + dfFDen);

System.out.println("alpha = " + alpha);
}

/ * Measures the discrepancy between observed and expected

* in an F-Test to study the null hypothesis about

* the relation between two variances. * /
static double FExpTwoVar(double varx, double vary,

double R, double nx, double ny)
{

double RExp= varx/vary;
dfFNum = nx-1;
dfFDen = ny-1;
System.out.println("\nRExp = varLarge/varSmall");
System.out.println("RExp = " + RExp);
double FExp = RExp/R;
System.out.println("\nFExp = RExp/R");
System.out.println("RExp = " + FExp);
return FExp;

}

public static void ConfIntervalRelat2VarsF(double varx,
double vary, double R,
double nx, double ny, double alpha)

{
System.out.println("\nConfidence interval " +

"for the relation between variances:");
double alphaHalf = alpha/2;
System.out.println("alpha = " + alpha);
dfFNum = nx -1;
dfFDen = ny-1;
System.out.println("Degrees of freedom of the numerator= "

+ dfFNum);
System.out.println("Degrees of freedom of" +

" the denumerator= " + dfFDen);

408 ANSWERS TO EXERCISES

double FMinus = p.critical(1-alphaHalf);
double FPlus = p.critical(alphaHalf);
System.out.println("FMinus = " + FMinus);
System.out.println("FPlus = " + FPlus);
double limInf = varx/(vary * FPlus);
double limSup = varx/(vary * FMinus);
System.out.println("limInf = varx/(vary * FPlus) = "

+ limInf);
System.out.println("limSup = varx/(vary * FMinus) = "

+ limSup);
System.out.printf("Confidence interval = " +

"(%10.4f, %10.4f)", limInf, limSup);
}

// F-test for the
//comparison of two variances.
private static void FTestTwoVariancesWork(

double varx, double vary, double R,
int nx, int ny, double alpha)

{
dfFNum = nx -1;
dfFDen = ny-1;
double nu1 = dfFNum;
double nu2 = dfFDen;
double a = Math.pow(nu1, nu1/2);
double b = Math.pow(nu2, nu2/2);
double c = F.beta(nu1/2,nu2/2);
k = a * b / c;
printData7(varx, vary, R, nx, ny, alpha);
System.out.println("F degrees of freedom: "

+ "Num = " + dfFNum
+ ", Den = " + dfFDen);

//F-test
System.out.printf(
"Discrepancy between observed and ");
System.out.printf("expected: \n");
double FExp = FExpTwoVar(varx, vary, R, nx, ny);
System.out.printf("FExp = %10.4f \n" , FExp);
//Top class is instructed to take

409

//the form of the particular class
p = F;
double pValue = p.pValue(FExp);
System.out.println("p-value(" +
FExp + ") = " +
"p(x > " + FExp + ") = " + pValue);
//Critical values
p.critManager(alpha);
//Confidence interval
ConfIntervalRelat2VarsF(varx, vary, R,

nx, ny, alpha);
separator();

}

//Data input for an F-test for the
//comparison of two variances.
private static void FTestTwoVariances()

{
//Example 211, pag. 187.
//varx is the larger variance
double varx = 3;
int nx = 4;
//vary is the smaller variance
double vary = 0.25;
int ny = 4;
//R = Ratio of greater variance to the smaller
double R = 1;
double alpha = 0.02;
FTestTwoVariancesWork(varx, vary, R,

nx, ny, alpha);
}

//======= Bivariate tests about means ========

//To compare means, one establishes in first place
//whether or not populational variances are equal.
// If they are equal, means are compared
//following one procedure in which
//samples are joint together to estimate the unique

410 ANSWERS TO EXERCISES

//variance, but if they are not, another procedure
//is used in which samples go apart.

//==== 8: comparing means when variances are equal ====

//t-test to compare the difference between means
//against an expected difference.
//Variances are supposed to be equal.
//Thus, samples are joint together to estimate
//the unique variance.

static void printData8(
double meanx,
double varx,
double nx,
double meany,
double vary,
double ny,
double mux,
double muy,
double alpha,
String s)

{
System.out.println("\nt-Test to study the null" +
"\nhypothesis about the differece between" +
" two means\n" + s + "\n");
System.out.println("Observed data: ");
System.out.println("\nmeanx=" + meanx);
System.out.println("varx =" + varx);
System.out.println("nx = " + nx);
System.out.println("meany= " + meany);
System.out.println("vary = " + vary);
System.out.println("ny= " + ny);
System.out.println("Ho: expected means :");
System.out.println("mux = " + mux);
System.out.println("muy = " + muy);
double diffExp = mux-muy;
double diffObs = meanx - meany;

411

System.out.println("Ho: expected difference of means ="
+diffExp);

System.out.println("Ho: observed difference of means ="
+diffObs);

System.out.println("alpha = " + alpha);
}

static private void confIntTwoMeansT(
double meanx,
double varx,
double nx,
double meany,
double vary,
double ny,
double alpha)

{
System.out.println("\nConfidence interval of the " +

" \ndifference between means " +
"when variances are equal");

double alphaHalf = alpha/2;
System.out.println("alpha = " + alpha);
System.out.println("dfT = nx+ny-2 = " + dfT);
double tc2 = p.critical(alphaHalf);
System.out.println("Critical t = tc2 = +/-"

+ tc2);
double jointDev = Math.pow((varx * (nx-1)

+ vary * (ny-1))/(nx+ny-2), 0.5);
System.out.println("jointDev = sj = " + jointDev);
double r = tc2 * jointDev;
System.out.println("r = tc2 * jointDev");
System.out.printf("r = %10.4f \n", r);
double limInf2 = meanx-meany - r;
double limSup2 = meanx-meany + r;
System.out.printf("limInf = xBar-yBar - r " +

"= %10.4f \n" , limInf2);
System.out.printf("limSup = xBar-yBar + r " +

"= %10.4f \n", limSup2);
}

412 ANSWERS TO EXERCISES

private static void tTestTwoMeansEqualVarWork(
double meanx,
double varx,
double nx,
double meany,
double vary,
double ny,
double mux,
double muy,
double alpha)

{
printData8(meanx, varx, nx,
meany, vary, ny,
mux, muy, alpha,
"when variances are equal");
double sj = Math.pow((varx * (nx-1)

+ vary * (ny-1))/(nx+ny-2), 0.5);
System.out.println("\nsj = Math.pow((var1 * (nx-1)"

+ "+var2 * (ny-1))/(nx+ny-2), 0.5)");
System.out.println("sj = " + sj);
double den = sj * Math.pow(1/nx + 1/ny, 0.5);
System.out.println(
"den = sj * Math.pow(1/nx + 1/ny, 0.5)");
System.out.println("den = " + den);
System.out.printf("Discrepancy between observed and ");
System.out.printf("expected: \n");
double tExp = ((meanx - meany)-(mux-muy))/den;
System.out.println(
"tExp = ((mediax-mediay)-(mux-muy))/den ");
System.out.println("tExp = " + tExp);
//Degrees of freedom
dfT = nx+ny-2;
System.out.println("dfT = nx+ny-2 = " + dfT);
//Top abstract class is instructed to take
//the form of the particular class
p = t;
//Truncation of degrees of freedom
if (dfT > 40) dfT = 40;

413

//Critical values
double tCriticOneTail = p.critical(alpha);
double alphaHalf = alpha/2;
double tCriticTwoTails = p.critical(alphaHalf);
double pValue = p.pValue(tExp);
System.out.println("p-value(" +

tExp + ") = " +
"p(x > " + tExp + ") \n = " + pValue);

System.out.printf("t-Critic for TWO TAILS " +
"= tc2 = +/-%10.4f \n", tCriticTwoTails);

System.out.printf("t-Critic for ONE TAIL " +
"= tc1 = +/-%10.4f \n", tCriticOneTail);

//Confidence interval
confIntTwoMeansT(meanx, varx, nx,

meany, vary, ny, alpha);
separator();

}

//Comparison of two means. Equal variances.
public static void tTestTwoMeansEqualVar()
{

//Example 213, pag. 190.
double meanx= 62.7;
double varx = 6.864;
double nx = 150;
double meany= 61.8;
double vary = 6.25;
double ny= 120;
double mux= 62.7;
double muy= 62.7;
double alpha = 0.02;
tTestTwoMeansEqualVarWork(meanx, varx, nx,
meany, vary, ny,
mux, muy, alpha);

}

//==== 9: comparing means when variances are different ====

414 ANSWERS TO EXERCISES

//t-test to compare the difference between means
//against an expected difference.
//Variances are supposed to be equal.
//Thus, samples are joint together to estimate
//the unique variance.

static private void confIntTwoMeansT2(
double meanx,
double varx,
double nx,
double meany,
double vary,
double ny,
double alpha)

{
System.out.println("\nConfidence interval of the " +

" \ndifference between means " +
"when variances are different");

double alphaHalf = alpha/2;
double tc2 = p.critical(alphaHalf);
System.out.println("alpha = " + alpha);
System.out.println("dfT (truncated) = " + dfT);
System.out.println("Critical t = tc2 = +/-"

+ tc2);
double deno = Math.pow(varx/nx + vary/ny, 0.5);
System.out.println("jointDev = " + deno);
double r = tc2 * deno;
System.out.println("r = tc2 * jointDev");
System.out.printf("r = %10.4f \n", r);
double limInf2 = meanx-meany - r;
double limSup2 = meanx-meany + r;
System.out.printf("limInf = xBar-yBar - r " +

"= %10.4f \n" , limInf2);
System.out.printf("limSup = xBar-yBar + r " +

"= %10.4f \n", limSup2);
}

415

private static double tDegreesOfFreedom(
double varx,
double nx,
double vary,
double ny,
double alpha)

{
System.out.println("\nDegrees of freedom:");
double num = Math.pow(varx/nx + vary/ny, 2);
double den1 = (varx/nx) * (varx/nx)/(nx+1);
double den2 = (vary/ny) * (vary/ny)/(ny+1);
double den = den1 + den2;
dfT = (int) (num/den -2);
System.out.println("num = " +

"Math.pow(var1/n1 + var2/n2, 2)");
System.out.println("den1 = (var1/n1) * (var1/n1)/(n1+1)");
System.out.println("den2 = (var2/n2) * (var2/n2)/(n2+1)");
System.out.println("den = den1 + den2");
System.out.println("dfT = num/den -2");

System.out.println("num = " + num);
System.out.println("den1 = " + den1);
System.out.println("den2 = " + den2);
System.out.println("den = " + den);
System.out.println("dfT = " + dfT);
return dfT;

}

private static void tTestTwoMeansDiffVarWork(
double meanx,
double varx,
double nx,
double meany,
double vary,
double ny,
double mux,
double muy,

416 ANSWERS TO EXERCISES

double alpha)
{

printData8(meanx, varx, nx,
meany, vary, ny,
mux, muy, alpha,
"when variances are different");
double deno = Math.pow(varx/nx + vary/ny, 0.5);
System.out.println(

"deno = Math.pow(varx/nx + vary/ny, 0.5)");
System.out.println("deno = " + deno);
System.out.printf("Discrepancy between observed and ");
System.out.printf("expected: \n");
double tExp = ((meanx - meany)-(mux-muy))/deno;
System.out.println(
"tExp = ((mean-meany)-(mux-muy))/deno ");
System.out.println("tExp = " + tExp);
dfT = tDegreesOfFreedom(varx, nx, vary, ny, alpha);
//Truncation of degrees of freedom
if (dfT > 40) dfT = 40;
//Top abstract class is instructed to take
//the form of the particular class
p = t;

//Critical values
double tCriticOneTail = p.critical(alpha);
double alphaHalf = alpha/2;
double tCriticTwoTails = p.critical(alphaHalf);
double pValue = p.pValue(tExp);
System.out.println("p-value(" +

tExp + ") = " +
"p(x > " + tExp + ") \n = " + pValue);

System.out.printf("t-Critic for TWO TAILS " +
"= tc2 = +/-%10.4f \n", tCriticTwoTails);

System.out.printf("t-Critic for ONE TAIL " +
"= tc1 = +/-%10.4f \n", tCriticOneTail);

//Confidence interval
confIntTwoMeansT2(meanx, varx, nx,

meany, vary, ny, alpha);
separator();

417

}

//Comparison of two means. Equal variances.
public static void tTestTwoMeansDiffVar(
)
{

//example 215, pag. 192.
double meanx= 34;
double varx = 5;
double nx = 12;
double meany= 12;
double vary = 90;
double ny= 7;
double mux = 3 * meany;
double muy = meany;
double alpha = 0.02;
tTestTwoMeansDiffVarWork(meanx, varx, nx,

meany, vary, ny,
mux, muy, alpha);

}

//==== 8+9a: comparing means + previous F-test====

//Comparison of two means.
//Splits in two cases: equal and different variances.
public static void tTestFullCompTwoMeansWork(

double meanx,
double varx,
int nx,
double meany,
double vary,
int ny,
double mux,
double muy,
double alpha)

418 ANSWERS TO EXERCISES

{
System.out.println("\nFull-fledged Comparison of two" +

" means. \nSplits in two cases: " +
"equal else different variances.");

//Test for the equality of variances
System.out.println("varx = " + varx);
System.out.println("vary = " + vary);
System.out.println("\nTest for the equality of variances ");
double R=1;
double RExp= varx/vary;
System.out.println("alpha = " + alpha);
System.out.println("\nExpected relation " +

"between variances =\nR=" + R);
dfFNum = nx-1;
dfFDen = ny-1;
if (RExp <1)

{
RExp = 1/RExp;
double k = dfFNum;
dfFNum = dfFDen;

dfFDen = k;
}

System.out.println("\nRExp = LargeVar/SmallVar");
System.out.println("RExp = " + RExp);
double FExp = RExp/R;
System.out.println("\nFExp = RExp/R");
System.out.println("FExp = " + FExp);
//Top abstract class is instructed to take
//the form of the particular class
p = F;
System.out.println("dfFNum = " + dfFNum);
System.out.println("dfFDen = " + dfFDen);
//Critical values
double alphaHalf = alpha/2;
double FCriticTwoTails = p.critical(alphaHalf);
System.out.println("alphahalf = " + alphaHalf);
System.out.println("FCriticTwoTails = " +
FCriticTwoTails);

419

if (FExp < FCriticTwoTails)
{

System.out.println("FExp < FCriticTwoTails ");
System.out.println("discrepancy is small, "

+ "variances are equal.");
tTestTwoMeansEqualVarWork(meanx, varx, nx,

meany, vary, ny,
mux, muy, alpha);

}
else

{
System.out.println("FExp > FCriticTwoTails ");
System.out.println("discrepancy is great, "

+ "variances are different.");
tTestTwoMeansDiffVarWork(meanx, varx, nx,

meany, vary, ny,
mux, muy, alpha);

}
}

//Comparison of two means.
//Splits in two cases: equal and different variances.
public static void tTestFullCompTwoMeans()
{

//Ej 214 pag 191:equal variances
double meanx= 4;
double varx = 3.2;
int nx = 15;
double meany= 3.5;
double vary = 4;
int ny= 20;
double mux= 0;
double muy= 0;
double alpha = 0.05;

//Ej 216 pag 193: different variances

420 ANSWERS TO EXERCISES

/ * double meanx= 3;
double varx = 1;
int nx = 7;
double meany= 1;
double vary = 0.0001;
int ny= 10;
double mux= 0;
double muy= 0;
double alpha = 0.05; * /
tTestFullCompTwoMeansWork(meanx, varx, nx,

meany, vary, ny,
mux, muy, alpha);

}

//==== 8+9b: comparing means for 2 lists of data ====

//Comparison of two means.
//Splits in two cases: equal and different variances.
//Lists of data
public static void tTestFullCompTwoMeansLists()
{

System.out.println("Test to compare means " +
"of two lists of data");

double DataVect1[]= {1,2,3};
double DataVect2[]= {4,5,6};
double alpha = 0.05;
meanVarVector(DataVect1);
meanVarVector(DataVect2);
//A table is declared
Table T1 = a.new Table(DataVect1);
int nx = T1.length;
double meanx = T1.mean(T1);
double varx = T1.var(T1);
//A table is declared
//A table is declared
Table T2 = a.new Table(DataVect2);

int ny = T2.length;

421

double meany = T2.mean(T2);
double vary = T2.var(T2);
double mux=1;
double muy = 1;
tTestFullCompTwoMeansWork(meanx, varx, nx,

meany, vary, ny,
mux, muy, alpha);

}

//==== 8+9c: comparing means for 2 tables =====
//==== of absolute frequencies ==============

public static void tTestFullCompTwoMeansFTWork(
double FreqTX[][], double FreqTY[][],
double mux, double muy, double alpha)
{

//A table is declared
FreqTable TX = a.new FreqTable(FreqTX);
System.out.println("\nTable of absolute frequencies X.");
meanVarFreqTable(FreqTX);
double meanx = TX.mean(TX);
double varx = TX.var(TX);
int nx = (int) TX.sum(TX,1);
FreqTable TY = a.new FreqTable(FreqTY);
System.out.println("\nTable of absolute frequencies Y.");
meanVarFreqTable(FreqTY);
double meany = TY.mean(TY);
double vary = TY.var(TY);
int ny = (int) TY.sum(TY,1);
tTestFullCompTwoMeansWork(meanx, varx, nx,

meany, vary, ny,
mux, muy, alpha);

}

//Comparison of two means.
//Tables of absolute frequencies
public static void tTestFullCompTwoMeansFT()
{

System.out.println("Comparison of two means." +

422 ANSWERS TO EXERCISES

"\nSplits in two cases: equal and different variances."+
"\nInput: two tables of frequency tables.");

//Problem 2, partial 3, version 5, pag. 165.
/ * double FreqTX[][] =

{{3, 3},
{4, 3},
{5, 2},
{6, 2},
{7, 1},
{8, 1}}; * /

double FreqTX[][] =
{{3, 3},

{4, 3},
{5, 2},
{6, 3},
{7, 2},
{8, 2},
{9,3}};

double FreqTY[][] =
{

{5, 1},
{6, 3},
{7, 1}};

double alpha = 0.05;
double muy = 5;
double mux = 5;
tTestFullCompTwoMeansFTWork(FreqTX, FreqTY,

mux, muy, alpha);
}

//==== 8+9d: comparing means for 2 tables =====
//==== of cumulative frequencies ==============

//Comparison of two means.
//Splits in two cases: equal and different variances.

423

//Tables of cumulative frequencies

//Comparison of two means: CF
//Splits in two cases: equal and different variances.
//Input: two tables of cumulative frequencies.
public static void fullCompTwoMeansCF()
{
System.out.println("Comparison of two means." +

"\nSplits in two cases: equal and different variances."+
"\nInput: two tables of cumulative frequencies.");

double cumFreqTX[][] =
{{14,0},

{15,15},
{16,20},
{17,25}};

double cumFreqTY[][] =
{{3, 0},

{4, 3},
{5, 7},
{6, 12},
{7, 17},
{8, 19},
{9,22}};

double alpha = 0.05;
double muy = 20;
double mux = 12;
System.out.println("\nTable X. " +
"\nClass marker and its cumulative frequency");
printMatrix(cumFreqTX, "Cumulative Table X");
int m = cumFreqTX.length;
double FreqTX[][] = new double[m][2];
FreqTX[0] = cumFreqTX[0];

for(int i = 1; i < m; i++)
{

424 ANSWERS TO EXERCISES

FreqTX[i][0] = cumFreqTX[i][0];
FreqTX[i][1] = cumFreqTX[i][1]-cumFreqTX[i-1][1];

}

System.out.println("\nTable Y. " +
"\nClass marker and its cumulative frequency");
printMatrix(cumFreqTY, "Cumulative Table Y");
int n = cumFreqTY.length;
double FreqTY[][] = new double[n][2];
FreqTY[0] = cumFreqTY[0];
for(int i = 1; i < n; i++)

{
FreqTY[i][0] = cumFreqTY[i][0];
FreqTY[i][1] = cumFreqTY[i][1]-cumFreqTY[i-1][1];

}
tTestFullCompTwoMeansFTWork(FreqTX, FreqTY,

mux, muy, alpha);
}

//==== 10: comparing means for paired data ====

//t-test to compare the difference between means
// of paired data against an expected difference.
//Data

//This inner class defines a new type: TablePairedData.
//It converts array Pair (two dimensional) into
//a class or object, ready for reuse.
private class TablePairedData
{
//The class TablePairedData has two main elements:
//1) The titles of the columns, whose length
//gives the number of columns.
//2) A matrix, whose length is the number of rows.

String[] Titles = { "x", "y", "D= x-y", "Dˆ2"};
double M[][] = new double[2000][Titles.length];
int nRows;

425

//The input of Table is defined here
//by means of an initialization procedure
//that is called constructor.
//The natural input is the matrix of paired data
//which is consigned in a matrix Pairs with 2 columns.
TablePairedData(double[][] Pairs)

{
System.out.println("t-test to compare " +

"means for paired data");
nRows = Pairs.length;

//The matrix M of Table is initialized
//Raw data go in columns 0 and 1.
//Squares in the second.
for(int i = 0; i < nRows; i++)
{

M[i][0] = Pairs[i][0];
M[i][1] = Pairs[i][1];
M[i][2] = M[i][0] - M[i][1];
M[i][3] = M[i][2] * M[i][2];

}
}

//Data of column k are summed.
//The input is a table, the output is of type double.
private double sum(TablePairedData T, int k)

{
double sum = 0;
for(int i = 0; i < T.nRows; i++)
sum = sum + T.M[i][k];
return sum;

}

private void printTable(TablePairedData T)
{

System.out.println("\nExtended matrix to " +
"calculate the variance of paired data:");

System.out.printf("%n %10s %10s %10s %10s",
T.Titles [0], T.Titles [1],

T.Titles [2],T.Titles [3]);

426 ANSWERS TO EXERCISES

for (int i = 0; i < T.nRows; i++)
System.out.printf(

"%n %10.3f %10.3f %10.3f %10.3f ",
T.M[i][0], T.M[i][1], T.M[i][2], T.M[i][3]);

System.out.println();
}

}//end of inner class

//Confidence interval for paired data
static private void confIntMeansPairedT(
double DBar, int n, double sD, double alpha)
{
System.out.println("\nConfidence interval of the " +
" \ndifference between means " +
"of paired data");
double alphaHalf = alpha/2;
System.out.println("dfT (truncated) = " + dfT);
double tc2 = p.critical(alphaHalf);
System.out.println("alpha = " + alpha);
System.out.println("Critical t = tc2 = +/-"

+ tc2);
System.out.println("DBar = " + DBar);
System.out.println("sD = " + sD);
double r = tc2 * sD/ Math.sqrt(n);
System.out.println("r = tc2 * sD/ Math.sqrt(n)");
System.out.printf("r = %10.4f \n", r);
double limInf2 = DBar - r;
double limSup2 = DBar + r;
System.out.printf("limInf = xBar-yBar - r " +

"= %10.4f \n" , limInf2);
System.out.printf("limSup = xBar-yBar + r " +

"= %10.4f \n", limSup2);
}

//t-test for the comparison of means of paired data.
private static void tTestPairedDataWork(

double[][] Pair, double alpha, double DeltaBar)

427

{
//A table is declared
TablePairedData T = a.new TablePairedData(Pair);
T.printTable(T);
int n = Pair.length;
double sumx = T.sum(T, 0);
double sumy = T.sum(T, 1);
double sumD = T.sum(T, 2);
double sumD2 = T.sum(T, 3);
System.out.println("Sums");
System.out.printf(

"%10.3f %10.3f %10.3f %10.3f ",
sumx, sumy, sumD, sumD2);

double DBar = sumD / n;
System.out.println("\n\nn = Par.length");
System.out.println("n = "+n);
System.out.println("sum(x-y) = sumD = " + sumD);
System.out.println(
"DBar = Observed mean difference = sumD / n");
System.out.println("DBar = "+ DBar);
// Let us calculate the variance
System.out.println("\nVariance:");
System.out.println("sumDˆ2= "+ sumD2);
System.out.println(

"var = (n * sumD2 - sumD* sumD) / (n * (n-1))");
double var = (n * sumD2 - sumD* sumD) / (n * (n-1));
System.out.println("Variance = "+ var);
double sD = Math.pow(var, 0.5);
System.out.println("sD = Deviation = Math.pow(var, 0.5)");
System.out.println("sD = "+ sD);

//Expected difference between means
System.out.println(
"DeltaBar = Expected mean difference = "+ DeltaBar);
double tExp = (DBar - DeltaBar)/(sD/Math.pow(n, 0.5));
System.out.println(

"tExp = (DBar - delta)/(des/Math.pow(n, 0.5)) ");
System.out.println(

"Discrepancy between observed and expected = tExp");

428 ANSWERS TO EXERCISES

System.out.println("tExp = " + tExp);
dfT = n-1;
System.out.println("Degrees of freedom = " + dfT);

//Truncation of degrees of freedom
if (dfT > 40) dfT = 40;
//Top abstract class is instructed to take
//the form of the particular class
p = t;

//Critical values
double tCriticOneTail = p.critical(alpha);
double alphaHalf = alpha/2;
double tCriticTwoTails = p.critical(alphaHalf);
double pValue = p.pValue(tExp);
System.out.println("p-value(" +

tExp + ") = " +
"p(x > " + tExp + ") \n = " + pValue);

System.out.printf("t-Critic for TWO TAILS " +
"= tc2 = +/-%10.4f \n", tCriticTwoTails);

System.out.printf("t-Critic for ONE TAIL " +
"= tc1 = +/-%10.4f \n", tCriticOneTail);

//Confidence interval
confIntMeansPairedT(DBar, n, sD, alpha);
separator();

}

//Data input to a t-test for means of paired data.
private static void tTestPairedData()
{

//Example 217, pag. 195.
double Pair[][] =

{ {20,19},
{23,17},
{30,20},
{27,23},
{25,15},
{21,19}};

429

double alpha = 0.05;
//Expected mean difference
double DeltaBar = 18.8;
tTestPairedDataWork(Pair, alpha, DeltaBar);

}

//==== 11: chi2 -test for factor independence ====

public static void printContTable(double M[][],
int nCol, int nRows, String s)

{
//Totals
double n = 0;
for(int i = 0; i< nRows; i++)
for(int j = 0; j< nCol; j++)

n = n + M[i][j];

double totalCol[] = new double[10];
double totalRow[] = new double[10];

//Sums by rows and columns
for(int i = 0; i< nRows; i++)

{
totalRow[i] = 0;
for(int j = 0; j< nCol; j++)

totalRow[i] = totalRow[i] + M[i][j];
}

for(int j = 0; j< nCol; j++)
{

totalCol[j] = 0;
for(int i = 0; i< nRows; i++)
totalCol[j] = totalCol[j] + M[i][j];

}

System.out.println("" + s + " and totals");
for(int i = 0; i< nRows; i++)

430 ANSWERS TO EXERCISES

{
for(int j = 0; j< nCol; j++)
System.out.printf("%10.4f ", M[i][j]);
System.out.printf("| %10.4f ", totalRow[i]);
System.out.println();

}

for(int j = 0; j<= nCol; j++)
System.out.printf("%10s ", "---");

System.out.printf("%n");

for(int j = 0; j< nCol; j++)
System.out.printf("%10.4f ", totalCol[j]);

System.out.printf("| %10.4f ", n);
//System.out.println("\nGreat Total = n = " + n);

}

//A chi2-test for factor independence is run
//over a contingency table.
public static void factorIndependenceWork(double Obs[][],

int nCol, int nRows, double alpha, String s)
{

System.out.println(s);

//Totals
double n = 0;
for(int i = 0; i< nRows; i++)

for(int j = 0; j< nCol; j++)
n = n + Obs[i][j];

double totalCol[] = new double[10];
double totalRow[] = new double[10];

//Sums by rows and columns
for(int i = 0; i< nRows; i++)

{
totalRow[i] = 0;

for(int j = 0; j< nCol; j++)
totalRow[i] = totalRow[i] + Obs[i][j];

431

}
for(int j = 0; j< nCol; j++)

{
totalCol[j] = 0;

for(int i = 0; i< nRows; i++)
totalCol[j] = totalCol[j] + Obs[i][j];

}

printContTable(Obs, nCol, nRows, "Observed");

//Expected under factor independence

double Exp[][] = new double[10][10];
for(int i = 0; i< nRows; i++)

for(int j = 0; j< nCol; j++)
Exp[i][j] = totalRow[i] * totalCol[j]/n;

//Errors, cell by cell
System.out.println("\n\nExp[i][j] " +

"= totalRow[i] * totalCol[j]/n");
printContTable(Exp, nCol, nRows,
"Expected under factor independence");
System.out.println("\n\nCalculation of discrepancy " +

"between observed and expected:");
System.out.println("Errors, cell by cell" +

" = Obs[i][j] * Obs[i][j]/Exp[i][j]");
System.out.println("Observed, " +

"expected and errors cell by cell");
double bigSum = 0;
for(int i = 0; i< nRows; i++)

for(int j = 0; j< nCol; j++)
{

double errorCell = Obs[i][j] * Obs[i][j]/Exp[i][j];
bigSum = bigSum + errorCell;

System.out.printf("%10.4f %10.4f %10.4f%n",
Obs[i][j], Exp[i][j],errorCell);

}
System.out.println("Sum of errors cell by cell " +

"= bigSum = " + bigSum);
System.out.println("n = " + n);

432 ANSWERS TO EXERCISES

double chi2Exp = bigSum-n;
System.out.printf("Discrepancy between" +

" observed and expected \n= chi2Exp = " +
"bigSum-n = %10.4f%n%n", chi2Exp);

dfChi2 = (nCol-1) * (nRows-1);
//Top abstract class is instructed to take
//the form of the particular class
p = chi2;
p.critManager(alpha);
separator();

}

public static void factorIndependence()
{

//Example 231, pag. 210
double Obs[][] = {

{4,3,2},
{3,2,1},
{2,1,1}};

int nCol = 3;
int nRows = 3;
double alpha = 0.05;
String s = "A chi2-test for factor independence";
factorIndependenceWork(Obs, nCol, nRows, alpha, s);

}

//==== 12: chi2 -test for proportion homogeneity ====

public static void chi2TestPropHomogeneity()
{

//Example 232, pag. 212
double Obs[][] = {

{7,6,1},
{15,18,20}};

int nCol = 3;
int nRows = 2;
double alpha = 0.05;
String s = "A chi2-test for proportion homogeinity";
factorIndependenceWork(Obs, nCol, nRows, alpha, s);

433

}

}//End of main class

434 ANSWERS TO EXERCISES

Bibliography

[1] Ammermann D (1985) Chromatin diminution and chromosome
elimination : mechanism and adaptive significance. In The Evo-
lution of Genome Size, edited by Cavalier -Smith, J. Wiley &
Sons Ltd., pp 427–442.

[2] Arneodo A, Aubenton Y, Bacry E, Graves P, Muzy J, Thermes
C, (1996), Wavelet based fractal analysis of DNA sequences ,
Physica D 96 291–320.

[3] Cavalier-Smith T,(1985) Introduction : the Evolutionary Sig-
nificance of Genome Size. In The Evolution of Genome Size,
edited by Cavalier -Smith, J. Wiley & Sons Ltd., 1–36.

[4] Developer (2011)
http://www.developer.com/java.
Verified 23 Jun 2011.

[5] Eclipse (classic) (2011)
http://www.eclipse.org/downloads/.
Verified 23 Jun 2011.

[6] Dexter M(2011)
http://sourceforge.net/projects/eclipsetutorial/
Verified 23 Jun 2011.

[7] Foote B, Yoder J (1995) Evolution, architecture and metamor-
phosis
http://www.laputan.org/metamorphosis/metamorphosis.html
Verified 24 Jun 2011

[8] Gregory, T.R. (2005). Animal Genome Size Database.
http://www.genomesize.com.
Verified 24 Jun 2011.

435

436 BIBLIOGRAPHY

[9] Holzner S (2004) Eclipse, O’Reilly Media, Sebastopol, Ca.

[10] Ihmels J, Collins S, Schuldiner M, Krogan N,Weissman J (2007)
Backup without redundancy: genetic interactions reveal the
cost of duplicate gene loss. Molecular Systems Biology 3: 86
doi:10.1038/msb4100127.

[11] Lee J (2003) Molecular biology: Complexity of gene and pseu-
dogene. Nature 423, 26–28 — doi:10.1038/423026a

[12] Oracle (2011a) Free Java download
http://java.com/en/download/index.jsp.
Verified 23 Jun 2011.

[13] Oracle (2011b) Java Developer Tutorials and Training.
http://www.oracle.com/technetwork/java/index-jsp-
135888.html.
Verified 23 Jun 2011.

[14] Swartz Fred (2007) Java Basics, Notes-Java.
http://www.leepoint.net/notes-java/index.html.
Verified 23 Jun 2011.

[15] Zamenhof S, Eichhorn H, (1962), Study of Microbial Evolution
through Loss of Biosynthetic Functions. Establishment of ”De-
fective” Mutants. Nature. 216: 456–458.

Index

computer, 1
hardware, 1

alphabet, 1

bug, 7

C-paradox, 94
class, 2
code, 1
code of interpretation, 1
compilation, 7
console, 6
copy, 5

data
quantitative, 11

data list, 11
debugging, 2, 8
delete, 5
developer, 1
distribution

z, 59

Eclipse, 2, 3
encapsulation, 164
error

correction , 7
event

extreme, 60
evolJava community, 5
evolution, 2
evolutionary inertia, 164

evolvable software, 163

functional style, 163

gossipless style, 163

hypothesis
alternate , 60
null , 60

Java, 2
installing, 2

language, 1

mean or average, 11
method, 2

OOP style, 163

p-value, 59
pasting, 5
printf, 14, 167
problem of granulation, 164
program, 1
programming language, 1
project, 4
projects, 2

robot, 1

science, 99
scientific method

naked , 60
select all, 5

437

438 INDEX

self-test, 14
semantic content, 1
significance level, 59
Software, 1
software is known by its fruits, 8
standard deviation, 11
Statistical inference, 99
style

entangled OOP, 93
functional, 18
gossipless, 24
motherland, 15

System.out.println, 6

table, 167
cumulative frequency , 28
frequency, 27

tails
one, 59
two, 59

test, 60
toolbox, 33
transparent style, 24, 163

value
lower critical , 60
upper critical , 60

variance
sample, 11

verbal instruction, 1

window
editor , 9

workspace, 3

